References
[1] Wang, D., Sun, Q., Hokkanen, M. J., Zhang, C., Lin, F. Y., Liu, Q., ... & Deng, X. (2020). Design of robust superhydrophobic surfaces. Nature, 582(7810), 55-59.
[2] Almalki, F. A., Albraikan, A. A., Soufiene, B. O., & Ali, O. (2022). Utilizing artificial intelligence and lotus effect in an emerging intelligent drone for persevering solar panel efficiency. Wireless Communications and Mobile Computing, 2022.
[3] Sasaki, K., Tenjimbayashi, M., Manabe, K., & Shiratori, S. (2016). Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Applied Materials & Interfaces, 8(1), 651-659.
[4] Zeng, Q., Zhou, H., Huang, J., & Guo, Z. (2021). Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 13(27), 11734-11764.
[5] Nilsson, M. A., & Rothstein, J. P. (2011). The effect of contact angle hysteresis on droplet coalescence and mixing. Journal of colloid and interface science, 363(2), 646-654.
[6] Xue, C. H., & Ma, J. Z. (2013). Long-lived superhydrophobic surfaces. Journal of materials chemistry A, 1(13), 4146-4161.
[7] Habib, M. A., Wu, S., Fan, Q., Magu, T. O., Yao, X., Lv, J., & Wang, J. (2021). Bioinspired in situ repeatable self-recovery of superhydrophobicity by self-reconstructing the hierarchical surface structure. Chemical Communications, 57(68), 8425-8428.
[8] Falde, E. J., Yohe, S. T., Colson, Y. L., & Grinstaff, M. W. (2016). Superhydrophobic materials for biomedical applications. Biomaterials, 104, 87-103.
[9] Li, Y., Luo, Y., Wang, Q., Zou, W., Zheng, W., Ma, X., & Yang, H. (2023). Synthesis and Performance Analysis of Green Water and Oil-Repellent Finishing Agent with Di-Short Fluorocarbon Chain. Molecules, 28(8), 3369.
[10] Zhang, L., Zhou, A. G., Sun, B. R., Chen, K. S., & Yu, H. Z. (2021). Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nature communications, 12(1), 982.
[11] Richardson, J. J., Björnmalm, M., & Caruso, F. (2015). Technology-driven layer-by-layer assembly of nanofilms. Science, 348(6233), aaa2491.
[12] Choi, M., Park, S., Choi, W., Kim, Y., Cho, K. M., Heo, J., ... & Hong, J. (2022). Highly durable and sustainable heterogeneous fabric using in-and-out fluorinated urethane coating for elimination of bacteria and oil–water separation. npj Clean Water, 5(1), 48.
[13] Chan, Y., Wu, X. H., Chieng, B. W., Ibrahim, N. A., & Then, Y. Y. (2021). Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections. Nanomaterials, 11(4), 1046.
[14] Nguyen-Tri, P., Altiparmak, F., Nguyen, N., Tuduri, L., Ouellet-Plamondon, C. M., & Prud’homme, R. E. (2019). Robust superhydrophobic cotton fibers prepared by simple dip-coating approach using chemical and plasma-etching pretreatments. Acs Omega, 4(4), 7829-7837.
[15] Kadarkaraithangam, J., Raja, T. S. G., Nayagi, S. P. B., & Krishnamoorthy, K. (2021). Nanostructured Materials for the Development of Superhydrophobic Coatings. In Novel Nanomaterials. IntechOpen.
[16] Bae, G. Y., Min, B. G., Jeong, Y. G., Lee, S. C., Jang, J. H., & Koo, G. H. (2009). Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. Journal of colloid and interface science, 337(1), 170-175.
[17] Stevens, K. A., Esplin, C. D., Davis, T. M., Butterfield, D. J., Ng, P. S., Bowden, A. E., ... & Iverson, B. D. (2018). Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry. Applied Physics Letters, 112(21), 211602.
[18] Ni, Y., Huang, J., Li, S., Wang, X., Liu, L., Wang, M., ... & Lai, Y. (2020). Underwater, multifunctional superhydrophobic sensor for human motion detection. ACS Applied Materials & Interfaces, 13(3), 4740-4749.
[19] Hooda, A., Goyat, M. S., Pandey, J. K., Kumar, A., & Gupta, R. (2020). A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Progress in Organic Coatings, 142, 105557.
[20] Sasaki, K., Tenjimbayashi, M., Manabe, K., & Shiratori, S. (2016). Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Applied Materials & Interfaces, 8(1), 651-659.
[21] Ellinas, K., Tserepi, A., & Gogolides, E. (2018). Superhydrophobic fabrics with mechanical durability prepared by a two-step plasma processing method. Coatings, 8(10), 351.
[22] Barthwal, S., & Lim, S. H. (2021). A durable, fluorine-free, and repairable superhydrophobic aluminum surface with hierarchical micro/nanostructures and its application for continuous oil-water separation. Journal of Membrane Science, 618, 118716.
Do'stlaringiz bilan baham: |