Sql server® 2012 t-sql fundamentals



Download 10,93 Mb.
Pdf ko'rish
bet292/443
Sana26.01.2022
Hajmi10,93 Mb.
#411755
1   ...   288   289   290   291   292   293   294   295   ...   443
Bog'liq
BookSQL

 

CHAPTER 7

 

Beyond the Fundamentals of Querying



 

 243

Solutions

This section provides solutions to the Chapter 7 exercises.



1

This exercise is very technical. It’s just a matter of being familiar with the syntax for window ranking 

functions. Here’s the solution query, returning for each order both the rank and the dense rank, parti-

tioned by custid and ordered by qty.

SELECT custid, orderid, qty, 

  RANK() OVER(PARTITION BY custid ORDER BY qty) AS rnk, 

  DENSE_RANK() OVER(PARTITION BY custid ORDER BY qty) AS drnk 

FROM dbo.Orders;



2

The window offset functions LAG and LEAD allow you to return an element from a previous and next 

row, respectively, based on the indicated partitioning and ordering specification. In this exercise

you need to perform the calculations within each customer’s orders, hence the window partitioning 

should be based on custid. As for ordering, use orderdate as the first ordering column and orderid as 

the tiebreaker. Here’s the complete solution query.

SELECT custid, orderid, qty, 

  qty - LAG(qty) OVER(PARTITION BY custid 

                      ORDER BY orderdate, orderid) AS diffprev, 

  qty - LEAD(qty) OVER(PARTITION BY custid 

                       ORDER BY orderdate, orderid) AS diffnext 

FROM dbo.Orders;

This query is a good example that shows that you can mix detail elements from the row with win-

dow functions in the same expression.



3

Solving a pivoting problem is all about identifying the elements involved: the grouping element, the 

spreading element, the aggregation element, and the aggregate function. After you identify the ele-

ments involved, you simply fit them into the “template” query for pivoting—whether it is the standard 

solution or the solution using the native PIVOT operator.

In this exercise, the grouping element is the employee (empid), the spreading element is order 

year (YEAR(orderdate)), and the aggregate function is COUNT; however, identifying the aggregation 

element is not that straightforward. You want the COUNT aggregate function to count matching rows 

and orders—you don’t really care which attribute it counts. In other words, you can use any attribute 

that you want, as long as the attribute does not allow NULL marks, because aggregate functions 

ignore NULL marks, and counting an attribute that allows NULL marks would result in an incorrect 

count of the orders. 

www.it-ebooks.info



244  

Microsoft SQL Server 2012 T-SQL Fundamentals

If it doesn’t really matter which attribute you use as the input to the COUNT aggregate, why not 

use the same attribute that you already use as the spreading element? In this case, you can use the 

order year as both the spreading and aggregation element. 

Now that you’ve identified all pivoting elements, you’re ready to write the complete solution. 

Here’s the solution query without using the PIVOT operator.

USE TSQL2012; 

 

SELECT empid, 



  COUNT(CASE WHEN orderyear = 2007 THEN orderyear END) AS cnt2007, 

  COUNT(CASE WHEN orderyear = 2008 THEN orderyear END) AS cnt2008, 

  COUNT(CASE WHEN orderyear = 2009 THEN orderyear END) AS cnt2009   

FROM (SELECT empid, YEAR(orderdate) AS orderyear 

      FROM dbo.Orders) AS D 

GROUP BY empid;

Recall that if you do not specify an ELSE clause in a CASE expression, an implicit ELSE NULL is as-

sumed. Thus the CASE expression produces non-NULL marks only for matching orders (orders placed 

by the current employee in the current order year), and only those matching orders are taken into 

consideration by the COUNT aggregate.

Notice that even though the standard solution does not require you to use a table expression, I 

used one here to alias the YEAR(orderdate) expression as orderyear to avoid repeating the expression 



YEAR(orderdate) multiple times in the outer query.

Here’s the solution query that uses the native PIVOT operator.

SELECT empid, [2007] AS cnt2007, [2008] AS cnt2008, [2009] AS cnt2009 

FROM (SELECT empid, YEAR(orderdate) AS orderyear 

      FROM dbo.Orders) AS D 

  PIVOT(COUNT(orderyear) 

        FOR orderyear IN([2007], [2008], [2009])) AS P;

As you can see, it’s just a matter of fitting the pivoting elements in the right places.

If you prefer to use your own target column names and not the ones based on the actual data, of 

course you can provide your own aliases in the SELECT list. In this query, I aliased the result columns 



[2007][2008], and [2009] as cnt2007cnt2008, and cnt2009, respectively.

www.it-ebooks.info





Download 10,93 Mb.

Do'stlaringiz bilan baham:
1   ...   288   289   290   291   292   293   294   295   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish