Справочник химика 21 химия и химическая технология



Download 20,73 Kb.
Sana23.05.2022
Hajmi20,73 Kb.
#607771
TuriСправочник

Справочник химика 21


ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ
СТАТЬИ РИСУНКИ ТАБЛИЦЫ О САЙТЕ ENGLISH
Неорганические ионы функции
Для обеспечения эффективного каталитического действия ферменты нуждаются в кофакторах, которые к концу реакции не претерпевают изменений и являются существенным ее элементом [1, 22]. Коферменты—это вещества органической природы, сложной структуры (алифатические и ароматические производные, нуклеотиды, гетероциклы). Они, как правило, непосредственно участвуют в каталитической реа щии как переносчики оп деленных химических группировок. Активаторы—это вещества неорганической природы, например,неорганические ионы, оказывающие активирующее воздействие на ферменты. В соответствии с их функциями в ферментативном катализе коферменты делятся на три основные группы [c.166]

Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]

Процессы пищеварения происходят под действием пищеварительных соков. Все пищеварительные соки за исключением желчи содержат ферменты гидролазы, воду, неорганические ионы и другие соединения. Важнейшими компонентами желчи являются желчные кислоты, желчные пигменты и холестерин. На различных участках пищеварительного тракта pH пищеварительных соков неодинаков (см. табл. 20). Благодаря этому ферменты, характеризующиеся различным оптимумом pH, выполняют переваривающую функцию. [c.394]

Функции неорганических ионов [c.156]

Действие фермента зависит и от присутствия солей в среде, так как концентрация ионов влияет на степень гидратации и стабильности белковых молекул, их форму, частично структуру, реакционную способность и некоторые другие свойства. Влияние солей не является выраженным для всех ферментов возможно потому, что для каталитической функции определяющими являются лишь те изменения, которые непосредственно связаны с активным центром, а такие изменения имеют место не всегда. Однако известны случаи, когда описываемое общее действие солей выявлено очень ярко. Так, ферментное действие актомиозина, расщепление им аденозинтрифосфата происходит оптимально только в присутствии ионов, причем в концентрации, которая примерно соответствует физиологической концентрации солей. Кроме общего действия, неорганические ионы могут еще оказывать на ферменты весьма важные, в том числе специфические действия, влияя как активаторы, специфические ингибиторы, денатурирующие агенты, стабилизаторы и др. [c.49]

Ранее многие исследователи считали, что скорость роста регулируется изменением клеточного осмотического давления. Действительно, как будет показано ниже (см. раздел VI), скорость растяжения клетки является линейной функцией ее осмотического давления. Однако у нас практически нет доказательств того, что именно колебания осмотического давления играют роль физиологического механизма, регулирующего скорость роста. Напротив, осмотическое давление клеток, как правило, остается относительно постоянным в процессе роста к.тетки. Осмотическое давление поддерживается во время роста на постоянном уровне отчасти благодаря взаимопревращениям крахмала и сахара внутри клетки, отчасти же за счет поглощения органических веществ (особенно сахаров) и неорганических ионов из окружающей среды. В клетках тканей, отделенных от растения, осмотическое давление во время роста падает по мере насасывания воды, если в инкубационную среду не добавлен сахар или ионы калия. [c.508]

Определение термодинамических характеристик реакций, протекающих в обратимых гальванических элементах, можно проводить как на системах, состоящих из органических соединений хи-нон-гидрохинон, так и на ряде окислительно-восстановительных систем, содержащих неорганические ионы в различных степенях окисления. В качестве примера обратимой реакции, используемой для определения термодинамических функций и протекающей в гальваническом элементе, состоящем из водородного и хингидронного электродов, рассмотрим восстановление хинона в гидрохинон. Реакция протекает в две стадии с образованием в качестве промежуточного продукта хингидрона [c.310]

Какой структурный компонент клетки выполняет функцию ионного барьера, остается неясным. Приписывать это свойство всей протоплазме было бы не совсем правильным, так как протоплазма в целом состоит из весьма различных структурных единиц. Эти единицы — клеточные ядра, митохондрии, хлоро-пласты и микросомы — являются центрами обмена веществ. Транспорт ионов в эти частицы должен рассматриваться как процесс усвоения. Он является физиологически не менее важным, чем транспорт ионов в вакуоли, потому что происходящие в митохондриях, хлоропластах и клеточных ядрах процессы требуют наличия неорганических ионов. Ферментные системы этих структурных компонентов клетки активируются различными катионами, а продукты синтеза нуждаются в таких неорганических составных частях, как фосфат, сульфат и особенно азот. [c.281]

Функции системы активного транспорта поддержание постоянства концентраций метаболитов независимо от колебаний содержания их во внешней среде, стабильное поддержание оптимальных концентраций неорганических ионов как кофакторов ферментативных реакций и для активирования других процессов, извлечение из окружающей среды необходимых веществ даже при низкой их концентрации, регуляция метаболизма [c.268]

Электролиты — другой тип растворенных в плазме веществ. Жидкости тела, как правило, содержат неорганические ионы, которые выполняют две важные функции поддерживают на определенном уровне pH крови и обеспечивают нужное осмотическое давление. [c.440]

У человека и высщих животных имеется ряд специальных органов (эндокринных желез или, как их раньше называли, желез внутренней секреции ), которые вырабатывают и направляют в кровь или лимфу особые вещества, являющиеся внутренними химическими регуляторами многочисленных биологических процессов, происходящих в организме. У человека различные гормоны вырабатываются щитовидной железой (тироксин и родственные йодированные аминокислоты), па-ращитовидными железами (особый гормон, регулирующий обмен кальция и фосфора), надпочечниками (адреналин, стероидные гормоны, регулирующие либо обмен углеводов, либо содержание неорганических ионов в крови), поджелудочной железой (инсулин, глюкагон), гипофизом (большое число пептидных и белковых гормонов, регулирующих ряд функций), семенниками и яичниками (половые гормоны) некоторые гормоны образуются в кишечнике и желудке. [c.81]

При рассмотрении растительной клетки удобно подразделять ее на ядро, хлоропласты, митохондрии и т. д. Как позволили установить биохимические исследования, эти дискретные субклеточные структуры обладают различными функциями, причем каждая из них выполняет свою особую роль в общей деятельности клетки. Когда рассматриваешь огромное разнообразие процессов, осуществляемых в различных фракциях клетки, перестаешь удивляться тому, что для оптимального протекания каждого процесса требуются весьма специфические условия, причем часто эти условия в одном или нескольких отношениях отличаются от условий,обнаруживаемых для других фракций. Таким образом внутри клетки существует множество участков со своими особыми микроусловиями. Границы каждого из таких микроучастков образованы системой полупроницаемых липопротеид-ных мембран, изолирующих эти участки друг от друга. Эти граничные структуры, с одной стороны, способствуют поддержанию постоянных условий в микроучастках, а с другой стороны, они допускают обмен метаболитами и другие связи с окружающей средой. Относительно механизмов действия мембран известно очень немногое. Некоторые явления, такие, например, как перенос неорганических ионов через клеточную мембрану против градиента концентрации, изучаются уже многие годы, но их механизм все еще остается непонятым. Однако мы имеем все основания с уверенностью утверждать, что мембраны — это не просто инертные барьеры для динамических клеточных процессов мембраны являются активными участниками и регуляторами обмена веществ клетки. [c.44]


В целом химическая связь между разнородными атомами в твердых неорганических веществах носит ковалентно-ионно-металлический или полярно-металлический характер. Тогда состояние электронов, участвующих в межатомной связи, может быть описано волновой функцией [c.132]

Каталитические межфазные реакции могут осуществляться как в системе жидкость — жидкость, так и в системе твердая фаза — жидкость. По характеру водной фазы в системе жидкость-жидкость реакции можно разделить на две группы реакции, в которых водная фаза представляет собою разбавленный раствор, и реакции, в которых водная фаза представляет собою концентрированный раствор. К первой группе относятся, например, реакции с переносом неорганических или органических анионов в органическую фазу окисление ионами М.ПО4 или СгОГ, обмен галогена в органических галогенидах на СН, N02, ОСОСНз и другие функции. Ко второй группе относятся все реакции, связанные с депротонированием под влиянием растворов щелочей, которое ведет к образованию органических анионов или карбенов [c.12]

Как и в случае неорганических ионов, вещества, выполняющие защитные функции, можно рассматривать либо как окисляющиеся вместо ацетата соединения, либо как работающие в качестве катализаторов обратной реакции между первичными продуктами окисления и восстановления. [c.249]

Теоретически по крайней мере можно представить себе четыре различных механизма ионной регуляции. В первом, наиболее простом случае организм не регулирует ни общую концентрацию, ни качественный состав неорганических ионов в своих жидкостях. Если учесть зависимость многих биохимических и физиологических функций от надлежащих условий ионной среды, не покажется удивительным, что этот первый тип ионной адаптации в природе не встречается. [c.123]

Неорганические осадки. Процесс образования неорганического осадка при определении органической функции несколько отличается -от процесса, происходящего в условиях гетерогенного -ионного равновесия, когда присутствуют только неорганические ионы. Рассмотрим две важные особенности проведения весового анализа органических функций. Первая особенность состоит в том, что надо полностью отщепить функциональную группу X, связанную с органическим радикалом К частично ионной ковалентной связью. Второй особенностью является необходимость подбора таких условий образования осадка, чтобы на нем не адсорбировалось органичен ское вещество. [c.66]

Классические методы микроскопии позволяют судить о клеточной архитектуре, но не дают подробной информации о клеточной химии Мы уже говорили о том, что для локализации в клетках специфических макромолекул можно использовать антитела. Но столь же важно знать распределение и концентрацию малых молекул. Поддержание жизни возможно только при быстрой и точной регуляции концентрации таких важнейших метаболитов, как АТР, глюкоза и неорганические ионы содержание этих веществ в различных участках клеток и тканей может существенно варьировать. Более того, поскольку низкомолекулярные вещества, такие, как клеточный АТР, кальций и водород могут выполнять функцию внутриклеточных мессенджеров , очень важно уметь прослеживать изменение их концентрации в ответ на внутриклеточные сигналы В этом разделе мы будем обсуждать некоторые методы, заимствованные из химии, методы, которые позволяют определять химические условия в клетках в процессе их жизнедеятельности. [c.194]

Функция необходимых бактериям ионов металлов заключается в том, что они служат активаторами или кофакторами многих ферментов [145]. Кроме того, неорганические ионы (в основном Na+ и К" ) участвуют в транспорте веществ через клеточные мембраны [155] и в регуляции синтеза белка [131]. Они являются также компонентами белковых комплексов, играющих важную роль в метаболизме бактерий, например, железо входит [c.201]

Исследование ионообменных смол показало, что в общем случае константа обмена уравнения (XI.6) является функцией степени замещения одного иона другим (состава ионита). Особенно четко эта зависимость проявляется для ионитов с высокой плотностью заряда, т. е. сильно сшитых органических ионитов с высокой обменной емкостью, а также для многих неорганических ионитов. Уравнения (XI. 3) и (XI. 6) применимы в умеренно концентрированных растворах (до 0,1—1 н.) к процессу обмена на ионитах, умеренно селективных относительно поглощаемого иона при более высоких концентрациях появляются отклонения от простых зависимостей. [c.678]

Предельный ток волны восстановления ионов водорода является функцией концентрации катализатора. Поэтому такие волны используются для определения ультрамалых количеств (до МО моль/л) неорганических и органических соединений. Однако необходимо тщательно контролировать условия эксперимента, поскольку зависит от потенциала и в большинстве случаев волна имеет вид полярограммы с максимумом. С увеличением концентрации катализатора iy стремится к предельному значению. Кроме того, /кат зависит от pH, проходя через максимум, положение которого совпадает с рК органического соединения, и от буферной емкости раствора. [c.450]

Существует огромное множество неорганических веществ, которые, как кажется с первого взгляда, могли бы выполнять функции ионообменников в определенных экстремальных условиях. К ним относятся прежде всего многочисленные природные минералы с силикатным скелетом, включающие в свой состав наряду с такими типичными для них катионами, как алюминий, кальций, железо, магний и т. д.-, катионы щелочных металлов, чаще всего натрия и калия, наиболее способные к ионному обмену. Не меньшее значение имеют силикаты, в которых способные к обмену ионы водорода находятся в форме гидроксильных групп или ионов гидроксония. [c.5]

Возникает вопрос — можно ли окись графита отнести к неорганическим ионообменникам, если ее группы с обменными функциями большей частью, (если неполностью) являются карбоксильными.-Пригодную для ионного обмена форму окиси. - графита можно приготовить [14] путем окисления графита либо КСЮз в смеси серной и азотной кислот, [c.23]

Молекулярные реакции из группы Б рассматривались ранее как преобладающий и типичный для органической химии вид реакций. Эта точка зрения изменилась после фундаментальных работ Меервейна, который установил, что в органической химии существенную роль играют также ионные реакции. Разумеется, в противоположность неорганическим ионам участвующие в реакции органические ионы образуются только в ходе реакции ( криптоионы , скрытые ионы), часто лишь благодаря столкновению участников реакции. Частота соударений является, помимо всего прочего, функцией температуры, что объясняет известный факт возрастания скорости органической реакции в общем в два-три раза при повышении температуры на 10°. Выше уже упоминалось о важной роли растворителя при образовании криптоионов. [c.102]

Однако даже тщательная предочистка от органических ионов и последующая деионизация воды на смешанном фильтре, позволяющие получить воду с чрезвычайно низкой электропроводностью, не гарантируют полного отсутствия в ней ничтожных следов органических веществ. Последние могут появиться в фильтрате за счет выщелачивания водорастворимых ионитовых материалов и способны образовывать прочные комплексные соединения с неорганическими ионами, например, при дальнейшем использовании воды для точных аналитических определений. Поэтому необходима самая тщательная предварительная обработка ионитов для смешанного фильтра. В этом плане представляет интерес работа Мартыновой [41], изучавшей кинетику удаления водорастворимых компонентов из промышленного образца анионита ЭДЭ-ЮП. Ею установлено, что количество вымываемых водой органических при-чМесей является функцией расхода NaOH при первичной регенерации анионита. Отмечается также, что определение концентрации в воде водорастворимых компонентов анионита лучше всего проводить методом окисления бихроматом. [c.144]

Хотя модуляционные эффекты вроде тех, которые могли бы вызываться сдвгггами в концентрациях неорганических ионов или ионов Н+, видимо, обладают известными компенсаторными потенциями, мы не должны забывать об одной их весьма невыгодной стороне изменения концентрации любого иона или значения pH будут влиять на разные ферменты по-разному. Напри.мер, изменение концентрации Mg + может резко активировать одни ферменты, умеренно активировать другие, никак не сказываться на функции третьих и даже тормозить активность четвертых. Сдвиги pH, вероятно, приводили бы к еще более выраженным дифференциальным эффектам. Таким образом, столь простой и экономный способ компенсации влияния температуры на активность ферментов, возможно, имеет лишь ограниченное значение. [c.296]

В работе [167] исследовано влияние различных органических и неорганических ионов на К+ функцию валиномицинового электрода. Наиболее сильно-влияющими катионами являются тяжелые щелочные ионы (Rb+, s+), а также ионы NH4, ТГ, Fe ". Заметное влияние оказывают положительно заряженные ПАВ (например, цетилтриметилбромид). Отрицательно заряженные и нейтральные ПАВ не изменяют электродных характеристик валиномицинового электрода. [c.82]

Ксилема - сложный компонент системы проводящих тканей. Зрелые элементы сосудов ксилемы представляют собой погибшие клетки, лишенные цитоплазмы. Боковые стенки их сильно лигнифицированы, и на их внутренней стороне имеются вторичные утолщения. Эти трубочки обеспечивают перенос воды и растворенных в ней неорганических ионов от корней к остальным частям растения (рис. 20-25). Ксилема также осуществляет опорную функцию, особенно у древесных растений. Ток жидкости в ксилеме направлен в одну сторону - к местам испарения влаги. Вода насасывается в трубочки, похожие на капилляры, благодаря испарению. Лигнин откладывается вокруг сосудов ксилемы таким образом, что получаются очень устойчивые к сжатию структуры, что весьма важно для трубочек, несущих жидкость, находящуюся под отрицательным давлением. Без подобного укрепления длинные трубочки попросту бы слиплись, как тонкая соломка для коктейлей. [c.403]

Наконец, с некоторой осторожностью следует упомянуть об абсорбции ионообменными полимерами неионных соединений. В настоящее время считают, что полимерная матрица ионообменной смолы является эффективным и селективным твердым растворителем для всех видов незаряженных органических веществ. Так, например, для анализа смеси углеводов обычно применяют катионо- и анионообменные смолы, а в качестве элюента — 85— 95%-ный этанол. Основная функция ионных групп заключается, по-видимому, в том, что вследствие их сольватации смола набухает и становится проницаемой для неионных соединений. Обычно этот принцип при анализе загрязнений окружающей среды не ис- пользовали. Однако в 1969 г. [65] для извлечения органических соединений из морской воды применили не являющийся ионооб-менником пористый сополимер стирола и дивинилбензола — амберлит ХАО-1. Оказалось, что в отличие от неорганических ионов, углеводов и аминокислот, которые этой смолой не удерживаются, кислоты жирного ряда с длинной алкильной цепью, холестерин, поверхностно-активные вещества, ДДТ и другие инсектициды и пестициды поглощаются из воды и затем могут быть элюированы [c.515]

При сорбции неорганических ионов практически все сорбционные центры доступны, и размеры пор сказываются главным образом на кинетике процесса. В случае больших органических ионов положение существенно меняется. Кроме кинетических факторов, следует учитывать абсолютную недоступность части сорбционных центров, расположенных в порах, размер которых меньше размера сорбируемого органического иона. Поэтому знание функции распределения пор по их размерам для различных типов ионообменных смол играет значительную роль при выборе сорбента и должно приниматься во внимание наряду с другими характеристиками, такими как тип иопогенных групп, полная обменная емкость и т. д. [c.169]

Существуют два основных типа прикрепительных контактов адгезионные соединения и десмосомы. Все они объединяют группы клеток в прочные структурные комплексы, связывая элементы их цитоскелетов. Адгезионные соединения связывают пучки актиновых филаментов, а десмосомы-промежуточные филаменты. Щелевые контакты служат для межклеточной коммуникации и состоят из групп канальных белков, позволяющих частицам с мол. массой менее 1500 непосредственно переходить из одной клетки в другую. Клетки, связанные такими контактами, обмениваются многими неорганическими ионами и Оругими малыми молекулами, т, е. они химически и электрически сопряжены. Щелевые контакты имеют большое значение для координации функций электрически активных клеток и, по-видимому, играют сходную роль также в других группах клеток. [c.486]

По мнению большинства исследователей, в основе биологического действия УФ-излучения лежат фотохимические превращения биомолекул — белков, нуклеиновых кислот и структурных липидов, участвующих в образовании биомембран эти превращения могут привести к поражению наследственного аппарата или мембранных образований. Ингибирование деления, мутации и гибель клеток в результате облучения в большинстве случаев относят за счет тех или иных повреждений ядра клетки. Описаны нару-н1ения в структуре ДНК в результате прямого (образования димеров) или опосредованного действия УФ-излучения [Копылов, Королькова, 1973 Самойлова, 1975]. Вместе с тем зти явления могут быть сопряжены и с повреждениями иных клеточных структур [Армап и др., 1971]. Основные эффекты воздействия УФ на клеточные мембранные структуры — увеличение их проницаемости для неорганических ионов и подавление активности отдельных мембранных ферментов и ферментативных комплексов [Рощупкин, 1973 Владимиров, Рощупкин, 1975]. Наиболее важным следует считать ослабление функции пассивного барьера для неорганических ионов, которое наблюдается нри небольших дозах облучения, когда фотоинактивация ферментов еще не наблюдается. Нарушение барьерной функции мембран, даже в незначительной степени, может привести к гибели клетки. Кроме эффекта отдаленной гибели клеток УФ-излучение в зависимости от дозы и спектра, а также [c.46]

Нами рассмотрен экспериментальный и теоретический материал, касающийся особенностей структуры и свойств пептидов, которые селективно взаимодействуют с фосфолипидными клеточными мембранами и с хроматином клеточного ядра. Мы преследовали цель выделить те формы межмолекулярных взаимодействий, которые определяют жизненно важные и прежде всего регуляторные биологические функции пептидов. В работе не представлены особенности взаимодействия пептидов с другими биологически важными компонентами живых клеток с углеводами, триглицеридами, стероидами, простагландинами и неорганическими ионами. Перечисленные вазимодействия также важны для саморегуляции живой системы и ее адаптации к окружающей среде. Наше упущение объясняется не столько меньшим вниманием современных исследователей к этим взаимодействиям, сколько достаточно скромными авторскими претензиями объять необъятное . Мы стремились понять и оценить вклад регуляторных пептидов в изменение жизненно важных биологических структур (бислойных фосфолипидных мембран, двойных спиралей ДНК). По-видимому, мы преуспели только в постановке задачи и пришли к определенным концептуальным выводам. [c.185]

Связывающие белки могут принимать участие в хемотаксисе, где они, по-видимому, также выполняют функцию узнавания . В настоящее время выделены белки, участвующие в связывании (и транспорте) ряда аминокислот, сахаров, карбоновых кислот и неорганических ионов в клетках грамотрицательпых бактерий, г[)ибов и животных. [c.55]

Хотя мембраны различных клеток и органелл существенно отличаются по химическому составу и выполняемым функциям, все же они имеют много общего в отношении основных закономерностей их молекулярной архитектуры. Однако последнее изучать нелегко в связи с тем, что мак-ромолекулярные компоненты мембран отличаются строгой специфичностью. Эта специфичность проявляется не только в тех нли иных реакциях, но и при формировании надмолекулярных мембранных комплексов. В этом плане в последние десятилетия усилия исследователей направлены на изучение природы взаимодействия между белковыми и липидными молекулами, а также молекулами других компонентов мембран углеводов, воды, неорганических ионов [c.7]

Во многих реальных ионообменных системах И. о. сопровождается побочными явлениями, в первую очередь комплексообразованием, переносом р-рителя (воды), неэквивалентным обменом, окислит.-восстановит. р-циями. Значения К для сорбции на комплексообразующих сорбентах больше, чем К обычного И. о. При И. о. многих орг. ионов помимо их удерживания ионогенными функц. группами сорбентов имеет место и дополнит, взаимод. этих ионов с матрицей сорбента (межмол. дисперсионные силы, водородная связь). Вследствие этого К для орг. соед. часто на 1-2 порядка выше, чем для неорганических. [c.261]

Смотреть страницы где упоминается термин Неорганические ионы функции: [c.210] [c.187] [c.114] [c.322] [c.536] [c.43] [c.119] [c.232]


Биохимия Том 3 (1980) -- [ c.156 ]

РЕКЛАМА
Больше, чем телевидение


И дешевле вашего! 1000+ каналов прямо на вашем телевизоре. Архив 7 дней и бесплатный тест.
antifriztv.com
ПЕРЕЙТИ
ПОИСК

Ценовые уступки


Спешите заказать по ценам акцииЗАКАЗАТЬ
Реклама

Смотрите так же термины и статьи:


Неорганические иониты. Иониты

Неорганические иониты. Иониты неорганические

© 2022 chem21.info Реклама на сайте

Загрузка рекламы...


87

87
Download 20,73 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish