Sergei A. Avdonin, Sergei A. Ivanov,, Jun-Min Wang



Download 25,41 Kb.
bet1/3
Sana10.07.2022
Hajmi25,41 Kb.
#771447
  1   2   3
Bog'liq
Ablabekov B


  1. Sergei A. Avdonin, Sergei A. Ivanov, , Jun-Min Wang - Inverse Problems For The Heat Equation With Memory, Inverse Problems and Imaging, Volume 13, No. 1, 2019, 31–38, doi:10.3934/ipi.2019002,

We study inverse boundary problems for one dimensional linear integro-differential equation of the Gurtin–Pipkin type with the Dirichlet-to Neumann map as the inverse data. Under natural conditions on the kernel of the integral operator, we give the explicit formula for the solution of the problem with the observation on the semiaxis t>0. For the observation on finite time interval, we prove the uniqueness result, which is similar to the local Borg–Marchenko theorem for the Schr¨odinger equation.


  1. Zhilin Li & Kewang Zheng, An Inverse Problem in a Parabolic Equation, Differential Equations and Computational Simulations III J. Electronic Journal of Differential Equations, Conference 01, 1997, pp. 193–199.ISSN: 1072-6691. https://www.researchgate.net/publication/26393471_An_inverse_problem_in_a_parabolic_equation .

An inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.


  1. A.G.Ramm , Inverse problems for parabolic equations 2, Communications in Nonlinear Science and Numerical simulation, Volume 12, Issue 6, September 2007, Pages 865-868

Let ut − uxx = h(t) in 0 ⩽ x ⩽ π, t ⩾ 0. Assume that u(0, t) = v(t), u(π, t) = 0, and u(x, 0) = g(t). The problem is: what extra data determine the three unknown functions {h, v, guniquely? This question is answered and an analytical method for recovery of the above three functions is proposed.





  1. Download 25,41 Kb.

    Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish