Реализация
В программе на matlab central прилагается файл уже натренированной нейро сети, а также GUI для демонстрации результатов работы. Ниже приведены примеры распознавания:
Имеется таблица сравнения методов распознавания на базе MNIST. Первое место за сверхточными нейро сетями с результатом 0.39% ошибок распознавания. Большинство из этих ошибочно распознанных изображений не каждый человек правильно распознает. Кроме того, в работе были использованы эластические искажения входных изображений, а также предварительное обучение без учителя.
Вывод
Развитие ИНС вызвало немало энтузиазма и критики. Некоторые сравнительные исследования оказались оптимистичными, другие - пессимистичными. Для многих задач, таких как распознавание образов, пока не создано доминирующих подходов. Выбор лучшей технологии должен диктоваться природой задачи. Нужно пытаться понять возможности, предпосылки и область применения различных подходов и максимально использовать их дополнительные преимущества для дальнейшего развития интеллектуальных систем. Подобные усилия могут привести к синергетическому подходу, который объединяет ИНС с другими технологиями для существенного прорыва в решении актуальных проблем. Как недавно заметил Минский, пришло время строить системы за рамками отдельных компонентов. Индивидуальные модули важны, но мы также нуждаемся в методологии интеграции. Ясно, что взаимодействие и совместные работы исследователей в области ИНС и других дисциплин позволят не только избежать повторений, но и (что более важно) стимулируют и придают новые качества развитию отдельных направлений.
Литература
1. DARPA Neural Network Study, AFCEA Int'l Press, Fairfax, Va., 1988.
2. J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, Reading, Mass., 1991.
3. S. Haykin, Neural Networks: A Comprehensive Foundation, MacMillan College Publishing Co., New York, 1994.
4. W.S. McCulloch and W. Pitts, "A logical Calculus of Ideas Immanent in Nervous Activity", Bull. Mathematical Biophysics, Vol. 5, 1943, pp. 115-133.
5. R.Rosenblatt, "Principles of Neurodynamics", Spartan Books, New York, 1962.
6. M. Miтnsky and S. Papert, "Perceptrons: An Introduction to Computational Geometry", MIT Press, Cambridge, Mass., 1969.
7. J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computational Abilities", in Proc. National Academy of Sciencies, USA 79, 1982, pp. 2554-2558.
8. P. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences", Phd Thesis, Dept. of Applied Mathematics, Harvard University, Cambridge, Mass., 1974.
9. D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing: Exploration in the Microstructure of Cognition, MIT Press, Cambridge, Mass., 1986.
10. J.A. Anderson and E. Rosenfeld, "Neurocomputing: Foundation of Research", MIT Press, Cambridge, Mass., 1988.
11. S. Brunak and B. Lautrup, Neural Networks, Computers with Intuition, World Scientific, Singapore, 1990.
12. J. Feldman, M.A. Fanty, and N.H. Goddard, "Computing with Structured Neural Networks", Computer, Vol. 21, No. 3, Mar.1988, pp. 91-103.
13. D.O. Hebb, The Organization of Behavior, John Wiley & Sons, New York, 1949.
14. R.P.Lippmann, "An Introduction to Computing with Neural Nets", IEEE ASSP Magazine, Vol.4, No.2, Apr. 1987, pp. 4-22.
15. A.K. Jain and J. Mao, "Neural Networks and Pattern Recognition", in Computational Intelligence: Imitating Life, J.M. Zurada, R.J. Marks II, and C.J. Robinson, eds., IEEE Press, Piscataway, N.J., 1994, pp. 194-212.
16. T. Kohonen, SelfOrganization and Associative Memory, Third Edition, Springer-Verlag, New York, 1989.
17. G.A.Carpenter and S. Grossberg, Pattern Recognition by SelfOrganizing Neural Networks, MIT Press, Cambridge, Mass., 1991.
18. "The First Census Optical Character Recognition System Conference", R.A.Wilkinson et al., eds., . Tech. Report, NISTIR 4912, US Deop. Commerse, NIST, Gaithersburg, Md., 1992.
Do'stlaringiz bilan baham: |