Решение.
Используем пакет Statistica 6.0, модуль Множественная регрессия.
Создадим новый документ с данными, введем число переменных – 3 и число регистров – 60. Введем наименования переменных и исходные данные.
В качестве зависимой переменной Cena выберем стоимость квартиры, в качестве независимых переменных возьмем: переменная PlochadZ – площадь жилья; переменная PlochadKukh – площадь кухни; NKomnat – число комнат.
Вызовем модуль Множественная регрессия. (Команда СтатистикаМножественная регрессия). Выберем переменные (кнопка (Variables). Зависимая (Dependent) – Cena; независимые (Independent) – PlochadZ, PlochadKukh, NKomnat.
Нажмем кнопку ОК в правом углу стартовой панели.
Появится окно результатов множественной регрессии.
Результаты множественной регрессии в численном виде представлены в табл. 1.2. и 1.3.
Таблица 1.2.
Таблица 1.3.
В первом столбце таблицы 1.2. даны значения коэффициентов beta — стандартизованные коэффициенты регрессионного уравнения, во втором — стандартные ошибки beta, в третьем – В – точечные оценки параметров модели.
Далее, стандартные ошибки для коэффициентов модели В, значения статистик t-критерия и т.д.
Из таблицы 1.2. мы видим, что оцененная модель имеет вид:
Cena = -3425 + 2205∙ Pl_Z + 1810∙ Pl_Kukh – 8023∙N_Kom (1.1)
(t) (-0,521) (5,245) (2,266) (-1,429)
В верхней части таблицы 1.2. и в таблице 1.3. (а также в информационном окне) приведены следующие данные:
Коэффициент множественной корреляции Multiple R = 0,87;
Коэффициент детерминации R-square = 0,75;
Скорректированный на потерю степеней свободы коэффициент множественной детерминации Adjusted R2 = 0,74;
Критерий Фишера F = 56,2;
Уровень значимости модели р < 0,000;
Стандартная ошибка оценки Std. Error of estimate = 18872.
Проанализируем данные множественной регрессии.
Табличное значение критерия Стьюдента, соответствующее доверительной вероятности = 0,95 и числу степеней свободы v = n – m – 1 = 56; tкр. = t0,025;56 = 2,3.
Сравнивая расчетную t-статистику коэффициентов уравнения с табличным значением, заключаем, что будут значимые коэффициенты регрессии при переменных жилая площадь и площадь кухни. Коэффициент регрессии при переменной число комнат значимым не будет, так же не будет значима постоянная в уравнении регрессии.
Уравнение (1.2.) выражает зависимость стоимости квартиры Cena от площади жилья PlochadZ, площади кухни PlochadKukh, числа комнат Nkomnat. Коэффициенты уравнения показывают количественное воздействие каждого фактора на результативный показатель при неизменности других. Помощь на экзамене онлайн.
Множественный коэффициент корреляции построенной модели (Multiple R) R = 0,87 высок, что говорит о сильной связи между исследуемыми факторами.
Коэффициент детерминации (R Square) R2 = 0,75, что говорит о том, что 75% вариации переменной Cena объясняется вариацией переменных PlochadZ и PlochadKukh, Nkomnat, а на 25% приходятся на долю других неучтенных факторов.
Критическое (табличное) значение критерия Фишера для доверительной вероятности = 0,95 и числа степеней свободы v1 = 3 и v2 = 56: Fкр. = F0,05;3;56 = 2,769.
Расчетное значение критерия Фишера F = 56,17 превышает табличное значение критерия Fтабл. = 2,769, что говорит о адекватности модели экспериментальным данным. Уровень значимости p = 0,000 показывает, что построенная регрессия значима при 0,000% уровне значимости.
Исследуем степень корреляционной зависимости между переменными. Для этого построим корреляционную матрицу. Чтобы корреляционная матрица была построена при множественной регрессии, нужно установить флажок в строке Review descriptive statistics, correlations matrix в окне Multiple Regressions.
Корреляционная матрица приведена в таблице 1.4.
Do'stlaringiz bilan baham: |