Решение линейныч диф уравнений с помощью операционного исчисления


§1. Оригиналы и изображения функций по Лапласу



Download 3,21 Mb.
bet2/7
Sana23.02.2022
Hajmi3,21 Mb.
#133710
TuriСамостоятельная работа
1   2   3   4   5   6   7
Bog'liq
Сам работа-1


§1. Оригиналы и изображения функций по Лапласу




Определение 1. Будем действительную функцию действительного аргумента f(t) называть оригиналом, если она удовлетворяет трем требованиям:
1) f (t) 0 , при t 0
2) f(t) возрастает не быстрее некоторой показательной функции , при t 0 , где M 0, s0 0 — некоторые действительные постоянные, s0 называют показателем роста функции f(t).
3) На любом конечном отрезке a, bположительной полуоси Ot функция f(t) удовлетворяет условиям Дирихле, т.е.
a) ограничена,
b) либо непрерывна, либо имеет лишь конечное число точек разрыва I рода,
c) имеет конечное число экстремумов.
Функции, удовлетворяющие этим трем требованиям, называются в операционном исчислении изображаемыми по Лапласу или оригиналами.
Простейшим оригиналом является единичная функция Хевисайда

Если функция удовлетворяет условию 2 и не удовлетворяет 1, то произведение будет удовлетворять и условию 1, т.е. будет оригиналом. Для упрощения записи будем, как правило, множитель  (t) опускать, считая, что все рассматриваемые функции равны нулю при отрицательных значениях t.
Интегралом Лапласа для оригинала f(t) называется несобственный интеграл вида
,
где – комплексный параметр.


Теорема.
Интеграл Лапласа абсолютно сходится в полуплоскости (то есть изображение F(p) заведомо определено при ), где s0 – показатель роста f (t).
∆ При получаем:
, но по свойству модулей .
Заметим, что по определению оригинала
.
Вычислим этот интеграл:

То есть получаем что F(p) существует при

Замечание. Из доказательства теоремы следует оценка:

при
Определение 2. Изображением по Лапласу функции f (t) называется функция комплексного переменного p = s + iσ, определяемая соотношением
(1)
Тот факт, что функция F(t) является изображением оригинала f (t), символически это записывается так:
или (2)

Download 3,21 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish