Kramer teoremasi. n ta noma`lumli n ta chiziqli tenglamalar sistemasi aniq bo`lishi uchun uning asosiy matritsasi determinantining noldan farqli bo`lishi zarur va yetarli. Yagona yechim ; ; …; ; …; tartiblangan tizimdan iborat bo`ladi, bu yerda Aj asosiy A matritsadan j-ustunning ozod hadlar ustuni bilan almashtirilgani bilan farq qiluvchi matritsa. Agarda detA = 0 bo`lsa, (2) sistema yoki aniqmas yoki birgalikda bo`lmaydi.
Masala. Quyida berilgan chiziqli tenglamalar sistemalarini birga-likda va aniqligini tekshiring. Birgalikdagi sistemalarni Kramer formulalari yordamida yeching:
1) 2)
3)
Berilgan sistemalar uch noma`lumli uchta chiziqli tenglamalar sistemasi bo`lgani uchun, dastlab, Kramer teoremasini tatbiq etamiz:
1) bo`lgani uchun - sistema aniq.
Yagona yechim Kramer formulalari yordamida topiladi:
, ,
. Sistema yechimi: ( -3; 2; 1).
2) . Kramer teoremasiga ko`ra, sistema yoki aniqmas yoki birgalikdamas. Kroneker-Kapelli teoremasiga murojaat etib, sistema kengaytirilgan matritsasi rangini Gauss algoritmi yorda-mida aniqlaymiz:
.
rang(A) = 2 = 2 = rang(A | B) < 3 (noma`lumlar soni) shartlar bajarilgani uchun sistema aniqmas va quyidagi sistemaga teng kuchli:
Oxirgi sistemani Kramer formulasi yordamida yechish mumkin:
Sistema yechimi:
3) detA = 0 bo`lgani uchun sistema yoki aniqmas yoki birgalikdamas.
Sistema kengaytirilgan matritsasi rangini nollar yig`ib, hisoblaymiz:
rang(A) = 2 < 3 = rang(A | B) munosabat o`rinli bo`lgani uchun sistema birgalikdamas.
3. Bir jinsli chiziqli tenglamalar sistemasining nolmas yechimlari mavjudlik shartlari.
Agar (1) sistema tenglamalari barcha ozod hadlari nolga teng bo`lsa, chiziqli tenglamalar sistemasi bir jinsli sistema deyiladi. Agarda tenglamalar ozod hadlaridan hech bo`lmaganda bittasi noldan farqli bo`lsa, sistema bir jinsli bo`lmagan sistema deb ataladi.
Chiziqli bir jinsli tenglamalar sistemasi doimo birgalikda, chunki rang(A) = rang(A | O) tenglik har doim o`rinli. Bundan tashqari, bir jins-li sistema har doim m ta nollar tizimi - nolli yoki trivial (0; 0; …; 0) yechimga egaligi bilan xarakterlanadi.
Chiziqli bir jinsli tenglamalar sistemasi uchun uning nolmas ye-chimlarga egalik shartini bilish muhimdir. Javob Kroneker–Kapelli teoremasidan kelib chiqadi.
Teorema. Chiziqli bir jinsli tenglamalar sistemasi nol yechimdan tashqari nolmas yechimlarga ham ega bo`lishi uchun sistema asosiy matritsasi rangining noma`lumlar sonidan kichik bo`lishi zarur va yetarli.
Teoremadan quyidagi xulosalarni chiqarish mumkin.
1-xulosa. Agar bir jinsli sistemaning noma`lumlari soni uning tenglamalari sonidan katta bo`lsa, sistema nol yechimdan tashqari nolmas yechimlarga ham ega.
2-xulosa. n ta noma`lumli n ta chiziqli bir jinsli tenglamalar sistemasi nol yechimdan tashqari nolmas yechimlarga ham ega bo`lishi uchun sistema asosiy matritsasining determinanti nolga teng bo`lishi zarur va yetarli.
Do'stlaringiz bilan baham: |