Reja: Qator yaqinlashishining zaruriy sharti. Teylor formulasi



Download 1,83 Mb.
bet1/3
Sana25.01.2023
Hajmi1,83 Mb.
#902092
  1   2   3
Bog'liq
Reja Qator yaqinlashishining zaruriy sharti. Teylor formulasi


Reja:



  1. Qator yaqinlashishining zaruriy sharti.

  2. Teylor formulasi.

  3. Misollar.



Qator yaqinlashishining zaruriy shartdan foydalanib va Teylor formulasi yordamida limitlarni hisoblash


Teylor formulasi matematik analizning eng muhim formulalaridan biri bo‘lib, ko‘plab nazariy tatbiqlarga ega. U taqribiy hisobning negizini tashkil qiladi.


Teylor ko‘phadi. Peano ko‘rinishdagi qoldiq hadli Teylor formulasi. Ma’lumki, funksiyaning qiymatlarini hisoblash ma’nosida ko‘phadlar eng sodda funksiyalar hisoblanadi. Shu sababli funksiyaning x0 nuqtadagi qiymatini hisoblash uchun uni shu nuqta atrofida ko‘phad bilan almashtirish muammosi paydo bo‘ladi.
Nuqtada differensiallanuvchi funksiya ta’rifiga ko‘ra, agar y=f(x) funksiya x0 nuqtada differensiallanuvchi bo‘lsa, u holda uning shu nuqtadagi orttirmasini   ya’ni

ko‘rinishda yozish mumkin.
Boshqacha aytganda x0 nuqtada differensiallanuvchi y=f(x) funksiya uchun birinchi darajali

ko‘phad mavjud bo‘lib, da bo‘ladi. Shuningdek, bu ko‘phad     shartlarni ham qanoatlantiradi.
Endi umumiyroq masalani qaraylik. Agar  nuqtaning biror atrofida aniqlangan  funksiya shu nuqtada  hosilalarga ega bo‘lsa, u holda

shartni qanoatlantiradigan darajasi dan katta bo‘lmagan  ko‘phad mavjudmi?
Bunday ko‘phadni

ko‘rinishda izlaymiz. Noma’lum bo‘lgan  koeffitsientlarni topishda

shartlardan foydalanamiz. Avval Pn(x) ko‘phadning hosilalarini topamiz:





Yuqorida olingan tengliklar va (3) tenglikning har ikkala tomoniga x o‘rniga x0 ni qo‘yib barcha  koeffitsientlar qiymatlarini topamiz:





Bulardan  hosil qilamiz. Topilgan natijalarni (3) qo‘yamiz va

ko‘rinishda ko‘phadni hosil qilamiz. Bu ko‘phad Teylor ko‘phadi deb ataladi.
Teylor ko‘phadi (2) shartni qanoatlantirishini isbotlaymiz. Funksiya va Teylor ko‘phadi ayirmasini  orqali belgilaymiz:  . (4) shartlardan  bo‘lishi kelib chiqadi.
Endi  ya’ni  ekanligini ko‘rsatamiz. Agar  bo‘lsa,  ifodaning  ko‘rinishdagi aniqmaslik ekanligini ko‘rish qiyin emas. Unga Lopital qoidasini marta tatbiq qilamiz. U holda
, demak da o‘rinli ekan.
Shunday qilib, quyidagi teorema isbotlandi:

Download 1,83 Mb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish