Reja: kirish mulohazalar. Mulohazalar ustida mantiqiy amallar



Download 250,92 Kb.
bet5/7
Sana21.05.2023
Hajmi250,92 Kb.
#942087
1   2   3   4   5   6   7
Bog'liq
Asal1

Misol: keltirilgan formuladir, ammo keltirilgan formula emas, chunki bu formulada implikatsiya operatsiyasi qatnashishi bilan birgalikda inkor operatsiyasi murakkab formula ga tegishlidir.
3.3-Teorema: Mulohazalar algebrasining har bir formulasining yo o’zi keltirilgandir yoki uni teng kuchli keltirilgan formula bilan almashtirish mumkin.
Bu teoremani isbotlash uchun mulohazalar algebrasining asosiy tengkuchliliklari bilan tanishib chiqamiz. Mulohazalar algebrasining tengkuchliliklari quyidagilar:

  1. (qo’sh inkor tengkuchliligi)

  2. (dizyunksiya kommuntativligi)

  3. (konyuksiyaning kommuntativligi)

  4. (dizyunksiya assotsiativligi)

  5. (konyunksiyaning assotsiativligi)

  6. (dizyunksiyaning konyuksiyaga nisbatan distributivligi)

  7. (konyuksiyaning dizyunksiyaga nisbatan distributivligi)

  8. (dizyunksiya idempotentligi)

  9. (konyuksiyaning idempotentligi)

  10. (yutilish tengkuchliligi)

  11. (yutilish tengkuchliligi)

  12. (de Morgan tengkuchliligi)

  13. (de Morgan tengkuchliligi)

  14. (uchinchini inkor etish tengkuchliligi)

  15. (qarama-qarshilik tengkuchliligi)

  16. a) , b) c) d)

  17. (kontrapozitsiya tengkuchliligi)

Bu teng kuchliliklar o’rinli ekanligini rostlik jadvali yordamida bevosita tekshirib ko’rish mumkin. Masalan, XIII tengkuchlilik uchun rostlik jadvalini ko’raylik:

A

B











1

1

0

0

1

0

0

1

0

0

1

0

1

1

0

1

1

0

0

1

1

0

0

1

1

0

1

1

II–XI, XIV–XVI tengkuchliliklarni tashkil etuvchi formulalar keltirilgan formulalar ekanligi ravshandir.
Bundan tashqari,
(1)
tengkuchlilik o’rinli ekanligini rostlik jadvali tuzib ko’rsatish qiyin emas. Yuqorida ekanligi ko’rsatilgan edi. Implikatsiyaning inkor va dizyunksiya bilan almashtirish mumkin ekanligidan quyidagi tengkuchlilikni hosil qilamiz:
(2)
Demak, va formulalar keltirilgan formulalar bilan almashtirilishi mumkin ekan. I, XII, XIII tengkuchliliklar qo’sh inkor hamda dizyunksiya va konyuksiyalar inkorlarini qanday keltirilgan formulalar bilan almashtirish mumkin ekanini ko’rsatadi.
Endi 3.3-teoremaning isbotini keltiramiz. Agar formulaning o’zi keltirilgan formula bo’lsa, u holda teorema isbotlangan bo’ladi.

3.3-misol. formulaning shaklini almashtiring va soddalashtiring.






(1) ga asosan



XIII va XII ga asosan



XII va XII ga asosan



1 ga asosan



VII ga asosan



XIV va II ga asosan



XVI ga asosan



VII ga asosan



XIV ga asosan



XVI va II ga asosan



XIV va XVI ga asosan

Demak, berilgan formula aynan teng formula ekan.
“Sheffer shtrixi” va “Pirs strelkasi” operatsiyalariga qaytamiz. Logik operatsiyalarning jadval formularini taqqoslasak:
,

ekanligini ko’ramiz. Demak, “Sheffer shtrixi” va “Pirs strelkasi” inkor va mos ravishda konyuksiya va dizyunksiya orqali ifoda qilinar ekan.

Formulaning normal shakllari quyidagi ta’rif asosida aniqlanadi.



Download 250,92 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish