Reja: kirish mulohazalar. Mulohazalar ustida mantiqiy amallar



Download 250,92 Kb.
bet4/7
Sana21.05.2023
Hajmi250,92 Kb.
#942087
1   2   3   4   5   6   7
Bog'liq
Asal1

Teorema: – jumlalar algebrasining ixtiyoriy formulasi, uning qism formulasi bo’lsin. agar bo’lsa, u holda bo’ladi.
Isboti: bo’lgani uchun va formulalar ularda qatnashgan propozitsional o’zgaruvchilar qiymatlarining barcha naborlarida bir xil qiymatlarga erishadilar. va formulalarning qiymatlari yoki bo’lgani uchun yo , yoki hosil bo’ladi. Bu esa ekanini ko’rsatadi.
Teorema: , lar va formulalarning har birida qatnashgan barcha propozitsional o’zgaruvchilar, lar esa ixtiyoriy formulalar bo’lsin. U holda bo’ladi; bunda har bir propozitsional o’zgaruvchi berilgan tengkuchlilikda necha joyda qatnashgan bo’lsa, shuncha joyda mos formula bilan almashtiriladi.
Isbot. tengkuchlilikda qatnashgan har bir propozitisional o’zgaruvchi 1 yoki 0 qiymat qabul qiladi. formula ham o’zida qatnashgan propozitsional o’zgaruvchilar qiymatlarining barcha naborlarida 1 yoki 0 qiymat qabul qiladi. formula tarkibida qatnashgan propozitsional o’zgaruvchilar bo’lsin. bu propozitsional o’zgaruvchilar qiymatlari naborlaridan biri va formulalarning nabordagi qiymatlari nabori bo’lsin. uzunligi bo’lgan nabor propozitsional o’zgaruvchilar qabul qiladigan qiymatlar naborlari srasida mavjuddir. va formulalar ta naborning har birida bir xil qiymatga ega bo’lgani uchun ular naborda ham bir xil qiymat qabul qiladilar.
Yuqorida isbotlangan teoremalardan bevosita quyidagi natijlaar kelib chiqadi.
Agar va bo’lsa, u holda
1)
2)
3)
4)
5)
Ta’rif: Agar formulaning tarkibida faqat konyuksiya, dizyunksiya va inkor operatsiyalari qatnashgan bo’lib, inkor speratsiyasi propozitsional o’zgaruvchilargagina tegishli bo’lsa, u holda bunday formula keltirilgan formula deyiladi.

Download 250,92 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish