Reja: •Daraxt va unga ekvivalent tushunchalar • Daraxtlarni Prufer usulida kodlash • Daraxtlarni ularning kodi bo’yicha



Download 50,96 Kb.
bet1/3
Sana01.01.2022
Hajmi50,96 Kb.
#302119
  1   2   3
Bog'liq
tgsb






Reja:

Daraxt va unga ekvivalent tushunchalar • Daraxtlarni Prufer usulida kodlash • Daraxtlarni ularning kodi bo’yicha



 


Graf, uch, qirra, daraxt, о'rmon, asiklik graf, marshrut, sikl,

zanjir, oddiy zanjir, ко'prik, grafning sinch daraxti, grafning

sinch o'rmoni, grafning siklomatik soni.

Daraxt va unga ekvivalent tushunchalar. Siklga ega bo'lmagan oriyentirlanmagan bog'lamli graf daraxt, deb ataladi1. Ta'rifga ko'ra, daraxt sirtmoqlar va karrali qirralarga ega emas. Siklga ega bo'lmagan oriyentirlanmagan graf о'rmon (asiklik graf), deb ataladi.

1-misol.1-shaklda bog'lamli komponentali soni beshga teng bo'lgan graf tasvirlangan bo'lib, u o'rmondir. Bu grafdagi bog'lamli komponentalarning har bin daraxtdir. ■

2-misol 2-shaklda to'rtta uchga ega bir-biriga izomorf bo'lmagan barcha (ular bor-yog'i ikkita) daraxtlarning geometrik ifodalanishi tasvirlangan.Beshta uchga ega birbiriga izomorf bo'lmagan barcha daraxtlar uchta, oltita uchga ega bunday barcha daraxtlar esa oltita ekanligini ko'rsatish qiyin emas.


Daraxt tushunchasiga boshqacha ham ta'rif berish mumkin. Umuman olgandaG(m,n)-gvaf uchun daraxtlar haqidagi asosiy teorema, deb ataluvchi quyidagi teorema o'rinlidir.



1-teorema. Uchlari soni m va qirralari soni n bo 'Igan G graf uchun quyidagi tasdiqlar ekvivalentdir:


  • G daraxtdir;

  • G asiklikdir va n=m—l;

  • G bog'lamlidir va n=m—\;


Induksion o'tish: 
daraxt uchun k>2 vam=k bo'lganda, 2) tasdiq o'rinli bo'lsin deb faraz qilamiz. Endi uchlari soni m=k+l va qirralari soni bo'lgan daraxtni qaraymiz. Bu daraxtning ixtiyoriy qirrasini (vp v2) bilan belgilab, undan bu qirrani olib tashlasak, Vj uchdan v2 uchgacha marshruti (aniqrog'i, zanjiri) mavjud bo'lmagan grafni hosil qilamiz, chunki agar hosil bo'lgan grafda bunday zanjir bor bo'lsa edi, u holda daraxtda sikl topilar edi. Bunday bo'lishi esa mumkin emas.


Hosil bo'lgan graf ikkita GlvaG2bog'lamli komponentalardan iborat bo'lib, bu komponentalarning har biri daraxtdir. Yana shuni ham e'tiborga olish kerakkiGlvaG2daraxtlarning har biridagi uchlar soni кdan oshmaydi.

Matematik induksiya usuliga ko'ra, bu daraxtlarning har birida qirralar soni uning uchlari sonidan bitta kam bo'lishini ta'kidlaymiz, ya'ni Gxgraf (m, «)-graf bo'lsa, quyidagi tengliklar o'rinlidir:

n=nx+n2+\, k+l=ml+m2va. n=m — \ (/=1,2). Bu tengliklardan

n=nl+n2+l=m]— l+m2—1+1= (mx+m2)—l= (k+l)—l


Endi daraxtlar haqidagi asosiy teoremaning 2) tasdig'idan uning 3) tasdig'i kelib chiqishini isbotlaymiz. graf asiklik, ya'ni u siklga ega bo'lmagan graf van=m— 1 bo'lsin. grafning bog'lamli bo'lishini isbotlash kerak.

Agar graf bog'lamli bo'lmasa, u holda uni har bir bog'lamli komponentasi siklsiz graf G. (ya'ni daraxt) bo'lgan qandaydir

к

kta (k>l) graflar dizyunktiv birlashmasi sifatida ^=U^ tenglik

/=]


bilan ifodalash mumkin. Har bir i=l,kuchun G.tgraf daraxt bo'lgani uchun, yuqorida isbotlangan tasdiqqa ko'ra, agar unda mj ta uch va «.ta qirra bo'lsa, u holda G. asiklikdir va n=m—1 tenglik

Agar qandaydir ikki uch bittadan ko'p, masalan, ikkita turli oddiy zanjir vositasida tutashtirilishi imkoniyati bo'lsa, u holda bu uchlarning biridan zanjirlarning birontasi bo'ylab harakatlanib ikkinchi uchga, keyin bu uchdan ikkinchi zanjir bo'ylab harakatlanib dastlabki uchga qaytish imkoniyati bor bo'lar счedi. Ya'ni qaralayotgan graf da sikl topilar edi.




Download 50,96 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish