Размеўения и перестановки с повторениями и без повторений. Сочетания без повторений и их свойства



Download 1,14 Mb.
bet2/16
Sana01.03.2022
Hajmi1,14 Mb.
#476196
1   2   3   4   5   6   7   8   9   ...   16
Bog'liq
РАЗМЕЎЕНИЯ И ПЕРЕСТАНОВКИ С ПОВТОРЕНИЯМИ И БЕЗ ПОВТОРЕНИЙ

Пример №1
Алфавит состоит из множества символов E={+,∗,0,1,f}. Определим количество таких трёхсимвольных слов в этом алфавите, которые не содержат повторяющихся букв.
Решение
Под трёхсимвольными словами будем понимать выражения вида "+*0" или "0f1". В множестве E пять элементов, поэтому буквы трехсимвольных слов образуют (5,3)-выборки. Первый вопрос: эти выборки упорядочены или нет? Слова, которые отличаются лишь порядком букв, полагаются различными, поэтому порядок элементов в выборке важен. Значит, выборка является упорядоченной. Второй вопрос: допускаются повторения или нет? Ответ на этот вопрос даёт условие: слова не должны содержать повторяющихся букв. Подводим итоги: буквы каждого слова, удовлетворяющего условию задачи, образуют упорядоченную (5,3)-выборку без повторений. Иными словами, буквы каждого слова образуют размещение без повторений из 5 элементов по 3. Вот примеры таких размещений:
(+,∗,f),(∗,+,f),(1,+,0)
Нас же интересует общее количество этих размещений. Согласно формуле (1) количество размещений без повторений из 5 элементов по 3 будет таким:
A35=5!(5−3)!=5!2!=60.
Т.е. можно составить 60 трёхсимвольных слов, буквы которых не будут повторяться.
Ответ: 60.
Размещения с повторениями из n элементов по k
Размещение с повторениями из n элементов по k – упорядоченная (n,k)-выборка с повторениями.
Количество размещений с повторениями из n элементов по k определяется следующей формулой:
¯Akn=nk(2)
Пример №2
Сколько пятизначных чисел можно составить из множества цифр {5,7,2}?
Решение
Из данного набора цифр можно составить пятизначные числа 55555, 75222 и так далее. Цифры каждого такого числа образуют (3,5)-выборку: (5,5,5,5,5), (7,5,2,2,2). Зададимся вопросом: что это за выборки? Во-первых, цифры в числах могут повторяться, поэтому мы имеем дело с выборками с повторениями. Во-вторых, порядок расположения цифр в числе важен. Например, 27755 и 77255 – разные числа. Следовательно, мы имеем дело с упорядоченными (3,5)-выборками с повторениями. Общее количество таких выборок (т.е. общее количество искомых пятизначных чисел) найдём с помощью формулы (2):
¯A53=35=243.
Следовательно, из заданных цифр можно составить 243 пятизначных числа.
Ответ: 243.
Перестановки без повторений из n элементов
Перестановка без повторений из n элементов – упорядоченная (n,n)-выборка без повторений.
По сути, перестановка без повторений есть частный случай размещения без повторений, когда объём выборки равен мощности исходного множества. Количество перестановок без повторений из n элементов определяется следующей формулой:
Pn=n!(3)
Эту формулу, кстати, легко получить, если учесть, что Pn=Ann. Тогда получим:
Pn=Ann=n!(n−n)!=n!0!=n!1=n!
Пример №3
В морозилке лежат пять порций мороженого от различных фирм. Сколькими способами можно выбрать порядок их съедения?
Решение


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   16




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish