Python Programming for Biology: Bioinformatics and Beyond


Figure 24.6.  A schematic overview of support vector machines



Download 7,75 Mb.
Pdf ko'rish
bet406/514
Sana30.12.2021
Hajmi7,75 Mb.
#91066
1   ...   402   403   404   405   406   407   408   409   ...   514
Bog'liq
[Tim J. Stevens, Wayne Boucher] Python Programming

Figure 24.6.  A schematic overview of support vector machines. Feature vectors

representing the training data are separated into different regions by a boundary line,

which in the original feature space can follow a complex path. The support vector machine

finds the boundary line by finding the linear hyperplane that best separates the data in a

higher number of dimensions. The decision hyperplane is in the middle of the widest

margin between the data classes, and this margin is itself determined by the support

vectors: data items which border the decision zone.

The  particular  algorithm  that  our  example  uses  in  its  learning  procedure  is  called

successive over-relaxation. This is a means of efficiently solving the linear equations that

govern  the  location  of  the  decision  hyperplane  between  two  categories  of  data.  The

objective of this algorithm is to define which of the feature vectors in the training data are

support  vectors,  and  thus  define  the  hyperplane  direction.  We  will  not  discuss  the

mathematical  detail  of  this  method  or  of  SVMs  in  general  here,  we  will  merely  give  a

flavour  of  what  is  happening.  However,  the  keen  and  more  mathematically  inclined

readers can investigate the specified literary references.

The  support  vector  machine  example  given  here  will  learn  and  predict  classifications

between two categories of vector data, here encoded internally as +1 and −1 respectively.

Obviously there are often situations where there are more than just two categories that we

wish  to  predict.  In  these  cases  multiple  support  vector  machines  can  be  used  to  make



separate  two-way  decisions.  Imagine  that  you  have  three  categories  of  data  A,  B  and  C:

the  first  support  vector  machine  might  distinguish  A  from  everything  else,  i.e.  the  other

category is B and C, and the second SVM will distinguish between the remaining B and

C.  It  should  be  noted,  however,  that  where  there  is  overlap  between  the  different

categories,  the  order  of  two-way  decisions  may  be  important;  in  general  you  would  try

different  combinations  and  tend  to  make  the  most  secure  predictions  first.  Although  we

will  only  be  discussing  an  SVM  that  can  be  used  for  classification  into  two  discrete

categories, there is a closely related method, support vector regression, which may be used

to  predict  continuous  values.  Here  the  vectors  of  training  data  have  a  range  of  different

numeric values and the support vectors are used to give a line of best fit to these in high-

dimensionality  space.  This  line  will  yield  predictions  by  interpolation;  calculating  the

position  of  a  query  along  the  line  of  known  slope  gives  an  estimate  of  the  associated

numeric value.


Download 7,75 Mb.

Do'stlaringiz bilan baham:
1   ...   402   403   404   405   406   407   408   409   ...   514




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish