Функция Кобба — Дугласа — производственная функция (или функция полезности), отражающая зависимость объёма производства {\displaystyle Q} от создающих его факторов производства — затрат труда {\displaystyle L} и капитала {\displaystyle K}.
Впервые была предложена Кнутом Викселлем. В 1928 году функция проверена на статистических данных Чарльзом Коббом и Полом Дугласом в работе «Теория производства». В этой статье была предпринята попытка эмпирическим путём определить влияние затрачиваемого капитала и труда на объём выпускаемой продукции в обрабатывающей промышленности США.
Общий вид функции:
{\displaystyle Q=A\times L^{\alpha }\times K^{\beta }},
где {\displaystyle A} — технологический коэффициент, {\displaystyle \alpha \geqslant 0} — коэффициент эластичности по труду, а {\displaystyle \beta \geqslant 0} — коэффициент эластичности по капиталу.
Если сумма показателей степени равна единице, то функция Кобба — Дугласа является линейно однородной, то есть она демонстрирует постоянную отдачу при изменении масштабов производства.
Если сумма показателей степени больше единицы, функция отражает возрастающую отдачу, а если она меньше единицы, — убывающую. Изокванта, соответствующая функции Кобба — Дугласа, будет выпуклой и «гладкой».
Теперь рассмотрим поведение функции Q при изменении масштабов производства. Предположим, что затраты каждого фактора производства увеличились в с раз. Тогда новое значение функции будет определяться следующим образом:
При этом, если α + β = 1, то уровень эффективности не зависит от масштабов производства. Если α + β < 1, то средние издержки, рассчитанные на единицу продукции, растут, а при α + β > 1 — убывают по мере расширения масштабов производства. Следует отметить, что эти свойства не зависят от численных значений К, L производственной функции. Для определения параметров и вида производственной функции необходимо провести дополнительные наблюдения. Как правило, пользуются двумя видами данных — динамическими (временными) рядами и данными одновременных наблюдений (пространственной информацией). Динамические ряды экономических показателей характеризуют поведение одной и той же фирмы во времени, тогда как данные второго вида обычно относятся к одному и тому же моменту, но к различным фирмам. В случаях когда исследователь располагает временным рядом, например годовыми данными, характеризующими деятельность одной и той же фирмы, возникают трудности, с которыми не пришлось бы столкнуться при работе с пространственными данными. Так, относительные цены со временем становятся иными, а следовательно, меняется и оптимальное сочетание затрат отдельных факторов производства. Кроме того, с течением времени изменяется и уровень административного управления. Однако основные проблемы при использовании временных рядов порождаются последствиями технического прогресса, в результате которого меняются нормы затрат производственных факторов, соотношения, в которых они могут замещать друг друга, и параметры эффективности. Вследствие этого с течением времени могут меняться не только параметры, но и формы производственной функции. Поправка на технический прогресс может быть введена с помощью некоторого временного тренда, включаемого в состав производственной функции. Тогда
Производственная функция Кобба — Дугласа с учетом технического прогресса имеет вид
В этом выражении параметр θ, с помощью которого характеризуется технический прогресс, показывает, что объем выпускаемой продукции ежегодно увеличивается на θ процентов независимо от изменений в затратах производственных факторов и, в частности, от размера новых инвестиций. Такая форма технического прогресса, не связанная с какими-либо затратами труда или капитала, называется «нематеризованным техническим прогрессом». Однако подобный подход не вполне реалистичен, так как новые открытия не могут повлиять на функционирование старых машин, а расширение объема производства возможно только посредством новых инвестиций. При другом подходе к учету технического прогресса для каждой «возрастной группы» капитала строят свою производственную функцию. В этом случае функция Кобба — Дугласа будет иметь вид
где Qt(v) — объем продукции, произведенной за период t на оборудовании, введенном в строй в период v; Lt(v) — трудовые затраты в период t на обслуживание оборудования, введенного в строй в период v, и Кt(v) — основной капитал, введенный в строй в период v и использованный в период t. Параметр v в такой производственной функции отражает состояние технического прогресса. Затем для периода t строится агрегированная производственная функция, представляющая собой зависимость совокупного объема выпускаемой продукции Qt от общих затрат труда Lt, и капитала Кt на момент t. При использовании для построения производственной функции пространственной информации, т.е. данных о нескольких фирмах, соответствующих одному и тому же моменту времени, возникают проблемы другого рода. Так как результаты наблюдений относятся к разным фирмам, то при их использовании предполагается, что поведение всех фирм может быть описано с помощью одной и той же функции. Для успешной экономической интерпретации полученной модели желательно, чтобы все эти фирмы принадлежали одной и той же отрасли. Кроме того, считается, что они располагают примерно одинаковыми производственными возможностями и уровнями административного управления. Рассмотренные выше производственные функции носили детерминированный характер и не учитывали влияния случайных возмущений, присущих каждому экономическому явлению. Поэтому в каждое уравнение, параметры которого предстоит оценить, необходимо ввести и случайную переменную е, которая будет отражать воздействие на процесс производства всех тех факторов, которые не вошли в состав производственной функции в явном виде. Таким образом, в общем виде производственную функцию Кобба — Дугласа можно представить как
Мы получили степенную регрессионную модель, оценки параметров которой А, α и β можно найти методом наименьших квадратов, лишь прибегнув предварительно к логарифмическому преобразованию. Тогда для i-го наблюдения имеем
где Qi, Кi и Li — соответственно объемы выпуска, капитальных и трудовых затрат для i-го наблюдения (i = 1, 2, ..., п), а п — объем выборки, т.е. число наблюдений, используемых для получения оценок ln , и — параметров производственной функции. Относительно εi обычно предполагается, что они взаимно независимы между собой и εi Î N(0, σ ). Исходя из априорных соображений значения α и β должны удовлетворять условиям 0 < α < 1 и 0 < β < 1. Если предположить, что с изменением масштабов производства уровень эффективности остается постоянным, то, приняв, что β = 1 — α, имеем
или
и
Прибегнув к такой форме выражения производственной функции, можно устранить влияние мультиколлинеарности между ln К и ln L [16] .
Так же важно отметить, что с понятием производственной функции фирмы, увязаны следующие три важные понятия: общего (совокупного), среднего и предельного продукта.
На рис. 22.1, а показана кривая общего продукта (ТР), который изменяется в зависимости от величины переменного фактора X. На кривой ТР отмечены три точки: В - точка перегиба, С - точка, которая принадлежит касательной, совпадающей с линией, соединяющей данную точку с началом координат, D - точка максимального значения ТР. Точка А перемещается по кривой ТР. Соединив точку А с началом координат, получим линию ОА. Опустив перпендикуляр из точки А на ось абсцисс, получим треугольник ОАМ, где tg а есть отношение стороны AM к ОМ, т. е. выражение среднего продукта (АР).
Рисунок .1. а) Кривая общего продукта (ТР); б) кривая среднего продукта (АР) и предельного продукта (МР)
Проведя через точку А касательную, получим угол Р, тангенс которого будет выражать предельный продукт МР. Сопоставляя треугольники LAM и ОАМ, находим, что до определенного момента тангенс Р по величине больше tg а. Таким образом, предельный продукт (МР) больше среднего продукта (АР). В том случае, когда точка А совпадает с точкой В, тангенс Р принимает максимальное значение и, следовательно, предельный продукт (МР) достигает наибольшего объема. Если точка А совпадает с точкой С, то значение среднего и предельного продукта равны. Предельный продукт (МР), достигнув максимального значения в точке В (рис. 22, б), начинает Сокращаться и в точке С пересечется с графиком среднего продукта (АР), который в этой точке достигает максимального значения. Затем и предельный, и средний продукт сокращаются, но предельный продукт уменьшается опережающими темпами. В точке максимума общего продукта (ТР) предельный продукт МР = 0.
Мы видим, что наиболее эффективное изменение переменного фактора X наблюдается на отрезке от точки В до точки С. Здесь предельный продукт (МР), достигнув своего максимального значения, начинает уменьшаться, средний продукт (АР) еще увеличивается, общий продукт (ТР) получает наибольший прирост [19].
Таким образом, производством называется любая человеческая деятельность по преобразованию ограниченных ресурсов – материальных, трудовых, природных – в готовую продукцию. Производственная функция характеризует зависимость между количеством используемых ресурсов (факторов производства) и максимально возможным объемом выпуска, который может быть достигнут при условии, что все имеющиеся ресурсы используются полностью и наиболее эффективным способом. Производственная функция обладает следующими свойствами: существует предел увеличения производства, который может быть достигнут при увеличении одного ресурса и постоянстве прочих ресурсов. Если, например, в сельском хозяйстве увеличивать количество труда при постоянных количествах капитала и земли, то рано или поздно наступает момент, когда выпуск перестает расти; ресурсы дополняют друг друга, но в определенных пределах возможна и их взаимозаменяемость без сокращения выпуска.
Производство - основная область деятельности фирмы. Фирмы используют производственные факторы, которые называются также вводимыми (входными) факторами производства.
Производственная функция – это зависимость между набором факторов производства и максимально возможным объемом продукта, производимым с помощью данного набора факторов.
Производственная функция может быть представлена множеством изоквант, связанных с различными уровнями объема производства. Такой вид функции, когда устанавливается явная зависимость объема производства продукции от наличия или потребления ресурсов, называется функцией выпуска.
В частности, широко используются функции выпуска в сельском хозяйстве, где с их помощью изучается влияние на урожайность таких факторов, как, например: разные виды и составы удобрений, методы обработки почвы. Наряду с подобными производственной функцией используются обратные к ним функции производственных затрат. Они характеризуют зависимость затрат ресурсов от объемов выпуска продукции (строго говоря, они обратны только к производственной функции с взаимозаменяемыми ресурсами). Частными случаями производственной функции можно считать функцию издержек (связь объема продукции и издержек производства), инвестиционную функцию (зависимость потребных капиталовложений от производственной мощности будущего предприятия).
Существует широкий выбор алгебраических выражений, которые можно использовать для представления производственных функций. Простейшая модель - это специальный случай общей модели анализа производства. Если фирме доступен только один вид деятельности, то производственную функцию можно представить прямоугольными изоквантами с постоянной отдачей от масштаба. Возможность изменять соотношение факторов производства отсутствует, и эластичность замены, безусловно, равна нулю. Это крайне специализированная производственная функция, но ее простота объясняет ее широкое применение во многих моделях [10? 193c.].
Математически производственные функции могут быть представлены в различных формах – от столь простых, как линейная зависимость результата производства от одного исследуемого фактора, до весьма сложных систем уравнений, включающих рекуррентные соотношения, которыми связываются состояния изучаемого объекта в разные периоды времени [7, с.237]..
Производственная функция графически представляется семейством изоквант. Чем дальше от начала координат расположена изокванта, тем больший объем производства она отражает. В отличие от кривой безразличия, каждая изокванта характеризует количественно определенный объем выпуска.
Рисунок 2 ‑ Изокванты, соответствующие различному объему производства
На рис. 1 представлено три изокванты, соответствующие объему производства в 200, 300 и 400 единиц продукции. Можно сказать, что для выпуска 300 единиц продукции необходимо K 1 единиц капитала и L 1 единиц труда или K 2 единиц капитала и L 2 единиц труда, или любая другая их комбинация из того множества, которое представлено изоквантой Y 2 = 300.
В общем случае в множестве X допустимых наборов производственных факторов выделяется подмножество X c , называемое изоквантой производственной функции, которое характеризуется тем, что для всякого вектора справедливо равенство
Таким образом, для всех наборов ресурсов, соответствующих изокванте, оказываются равными объемы выпускаемой продукции. По существу изокванта представляет собой описание возможности взаимной замены факторов в процессе производства продукции, обеспечивающей неизменный объем производства. В связи с этим оказывается возможным определить коэффициент взаимной замены ресурсов, используя дифференциальное соотношение вдоль любой изокванты
Отсюда коэффициент эквивалентной замены пары факторов j и k равен:
Полученное соотношение показывает, что если производственные ресурсы замещаются в отношении, равном отношению приростных продуктивностей, то количество производимой продукции остается неизменным. Нужно сказать, что знание производственной функции позволяет охарактеризовать масштабы возможности осуществить взаимную замену ресурсов в эффективных технологических способах. Для достижения этой цели служит коэффициент эластичности замены ресурсов по продукции
который вычисляется вдоль изокванты при неизменном уровне затрат прочих производственных факторов. Величина sjk представляет собой характеристику относительного изменения коэффициента взаимной замены ресурсов при изменении соотношения между ними. Если отношение взаимозаменяемых ресурсов изменится на sjk процентов, то коэффициент взаимной замены sjk изменится на один процент. В случае линейной производственной функции коэффициент взаимной замены остается неизменным при любом соотношении используемых ресурсов и поэтому можно считать, что эластичность s jk = 1. Соответственно большие значения sjk свидетельствуют о том, что возможна большая свобода в замене производственных факторов вдоль изокванты и при этом основные характеристики производственной функции (продуктивности, коэффициент взаимозамены) будут меняться очень слабо [9, 234с.].
Для степенных производственных функций для любой пары взаимозаменяемых ресурсов справедливо равенство s jk = 1.
Представление эффективного технологического множества с помощью скалярной производственной функции оказывается недостаточным в тех случаях, когда нельзя обойтись единственным показателем, описывающим результаты деятельности производственного объекта, но необходимо использовать несколько ( М ) выходных показателей (рисунок 3).
Рисунок 3 ‑ Различные случаи поведения изоквант
В этих условиях можно использовать векторную производственную функцию
Важное понятие предельной (дифференциальной) продуктивности вводится соотношением
Аналогичное обобщение допускают все остальные главные характеристики скалярных ПФ.
Подобно кривым безразличия изокванты также подразделяются на различные типы.
Для линейной производственной функции вида
где Y объем производства; A , b 1 , b 2 параметры; K , L затраты капитала и труда, и полном замещении одного ресурса другим изокванта будет иметь линейную форму (рисунок 4, а).
Для степенной производственной функции
Тогда изокванты будут иметь вид кривых (рисунок 4,б).
Если изокванта отражает лишьодин технологический способ производства данного продукта, то труд и капитал комбинируются в единственно возможном сочетании (рисунок 4,в).
а). Изокванты линейного типа
|
б). Изокванты степенной производственной функции
|
в). Изокванты при жесткой дополняемости ресурсов
|
г) Ломаные изокванты
Рисунок 4 – Разные варианты изоквант
Такие изокванты иногда называют изоквантами леонтьевского типа по имени американского экономиста В.В. Леонтьева, который положил такой тип изокванты в основу разработанного им метода inputoutput (затратывыпуск).
Ломаная изокванта предполагает наличие ограниченного количества технологий F (рисунок 4,г).
Изокванты подобной конфигурации используются в линейном программировании для обоснования теории оптимального распределения ресурсов. Ломаные изокванты наиболее реалистично представляют технологические возможности многих производственных объектов. Однако в экономической теории традиционно используют главным образом кривые изокванты, которые получаются из ломаных при увеличении числа технологий и увеличении соответственно точек излома [11, 304c.].
Наиболее широко распространены мультипликативно-степенные формы представления производственных функций. Их особенность состоит в следующем: если один из сомножителей равен нулю, то результат обращается в нуль. Легко заметить, что это реалистично отражает тот факт, что в большинстве случаев в производстве участвуют все анализируемые первичные ресурсы и без любого из них выпуск продукции оказывается невозможным. В самой общей форме (она называется канонической) эта функция записывается так:
или
Здесь коэффициент А, стоящий перед знаком умножения, учитывает размерность, он зависит от избранной единицы измерений затрат и выпуска. Сомножители от первого до n-го могут иметь различное содержание в зависимости от того, какие факторы оказывают влияние на общий результат (выпуск). Напр., в ПФ, которая применяется для изучения экономики в целом, можно в качестве результативного показателя принять объем конечного продукта, а сомножителей – численность занятого населения x1, сумму основных и оборотных фондов x2, площадь используемой земли x3. Только два сомножителя у функции Кобба–Дугласа, с помощью которой была сделана попытка оценить связь таких факторов, как труд и капитал, с ростом национального дохода США в 20–30-е гг. ХХ в.:
Do'stlaringiz bilan baham: |