Приближенное вычисление интеграла



Download 128,06 Kb.
bet4/8
Sana18.05.2023
Hajmi128,06 Kb.
#940463
TuriЛитература
1   2   3   4   5   6   7   8
Bog'liq
referatmix 53083

Листинг 1.4. Функция adaptive_simpson модуля integral
Function adaptive_simpson(F:real_fun:x0,x1,eps,eta:real):real;
const
max_level=35;
var
k,nest_level:word;
integral_abs:real;
function simpson3poin(x0,delta_x, estimate, integral_abs,
eps,eta,left,middle,right:real):real;
var
dx3,sum,eps3,eta3,factor,left_integ,
middle_integ, right_integ,F1,F2,F4,F5:real;
begin
Inc(nest_level);
dx3:=delta_x/3.0;
F1:=F(x0+0.5*dx3);
F2:=F(x0+dx3);
F:=F(x0+2.0*dx3);
F5:=F(x0+2.5*dx3);
Inc(no_evaluations,4);
factor:=dx3/6.0;
left_integ:=factor*(left+4.0*F1+F2);
middle_integ:=factor*(F2+4.0*middle+F4);
right_integ:=factor*(F4+4.0*F5+right);
sum:=left_integ+middle_integ+right_integ;
integral_abs:=integral_abs- Abs(eastimate)+Abs(left_integ)+Abs(middle_integ)+Abs(right_integ);
if (nest_level>1) and ((nest_level=max_level) or
(Abs(sum- estimate)<=eps+eta*integral_abs)) then simpson3point:=sum
else
Begin
If nest_level>highest_level then
Inc(highest_level);
Eps3:=0.577*eps;
Eta3:=0.577*eta;
Left_integ:=simpson3point(x0,dx3,left_integ,integral_abs,eps3,eta3, left,F1,F2);
middle_integ:=simpson3point(x0+dx3,dx3,middle_integ, integral_abs,eps3,eta3,F2,middle,F4);
right_integ:=simpson3point(x0+2.0*dx3,dx3,right_integ,integral_abs,eps3,eta3,F4,F5,right);
simpson3poin:=left_integ+middle_integ+right_integ;
end;
Dec(nest_level);
End; {simpson3point}
Begin {adaptive_simpson}
nest_level:=1;
highest_level:=1;
no_evaluations:=3;
adaptive_simpson:=simpson3point(x0,x1-x0,0.0,0.0,eps,eta,F(x0),F(x0+0.5*(x1-x0)),F(x1));
end;{adaptive_simpson}


1.3. Метод Ромберга и его реализация на языке Pascal.

Интегрирование следующим методом – методом Ромберга – основано на правиле трапеций, использующем кусочно-линейное приближение для интегрируемой функции. Основной факт относительно погрешности в методе трапеций следующий.


Теорема. Пусть F(x) – гладкая функция на интервале [a,b], и этот интервал делится на т равных частей, каждая длиной h = . Пусть I(h) обозначает соответствующее приближение метода трапеций:
I(h) = ,
где fi=F(a+jh) – значение интегрируемой функции в точке a+jh.
Тогда
,
Где ak – некоторая константа.
Основное здесь то, что погрешность в методе трапеций может быть выражена рядом по четным степеням шага интегрирования h. Построим таблицу значений Tik:


В нулевой строке T0k = I((ba)/2k), так что T00,T01,… являются последовательными приближениями метода трапеций для интеграла, каждое с удвоенным по сравнению с предыдущим числом интервалов. Согласно приведенной выше теореме,
,
где h = ((ba)/2k.
Отсюда следует, что
,
Поэтому положим
.
В общем случае строим j-ю строку таблицы Ромберга по формуле
,
а оценка погрешности имеет вид
,
где h = (ba)/2k.
Для работы понадобится не целая таблица, а только последняя вычисленная строка. Число точек выборки на каждом шаге удваивается. Обратите внимание на то, что функцию следует вычислять только в новых точках, которые являются средними точками предыдущих подынтервалов:
F0 + 2F1 + 2F2 + …+ 2F2n-1 + F2n =
= (F0 + 2F2 + 2F4 + …+ 2F2n-2 + F2n) + 2(F1 + F3 +…+F2n-1).

Таким образом, чтобы модифицировать предыдущее приближение, необходимо вычислить сумму значений функции в новых средних точках. Это делается в цикле со счетчиком k. Метод Ромберга реализован в функции romberg (листинг1.5).



Download 128,06 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish