Precise asymptotics in some strong limit theorems for multidimensionally indexed random variables



Download 0,84 Mb.
bet4/10
Sana18.07.2022
Hajmi0,84 Mb.
#822655
1   2   3   4   5   6   7   8   9   10
Bog'liq
ГУТ АЛЛАН ГАФУРОВ ИШЛАРИ(1)

2. Preliminaries


A first important observation is that inequalities which do not depend on the (partial) order of the index set Z+d, such as the triangle inequality, moment inequalities for sums, and so on, remain valid “automatically”. Namely, such relations only depend on the fact that, if   are random variables and   their partial sums, then   is simply a sum of   random variables.
The following quantities and their asymptotic behaviour turn out to be crucial. Let

The following asymptotics hold:
equation(2.1)

and
equation(2.2)

see [12, Chapter XVIII] (for the case d=2; the general case is analogous) and [30, Chapter 12]. (The quantity d(j) has no pleasant asymptotics; e.g.,  , and  .)
Another important observation is that, since all terms in the sums we consider are nonnegative, we may change the order of summation, in particular as follows (cf. also e.g. [7] and [8]),
equation(2.3)

More importantly, whenever the functions involving   only depend on the value of  , the second summation can be simplified further. For example, for the sum in Theorem 1 we have
equation(2.4)

This observation should be kept in mind throughout.
We also need the following lemmas, the first three of which generalize Gut and Spătaru [10].
Lemma 2.1. Assume thatE[|X|β(log(1+|X|))d−1]<∞, and setb(ε)=εβp/(βp)where 1⩽p<β<αFor any constanta>0,

Proof. We first note that k>b(ε) if and only if k<εβkβ/p. It follows that

Lemma 2.2. Letr⩾2, assume thatE[|X|r(log(1+|X|))d−1]<∞, and setρ(ε)=ε−2p/(2−p)where 1⩽p<2. For any constanta>0,

Proof. Modifying the previous proof we first note that k>ρ(ε) if and only if  . It follows (omitting some of the steps) that

Lemma 2.3. Assume that and setc(ε)=eM/ε2whereM>1. Let 0⩽δ⩽1.For any constanta>0,


Download 0,84 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish