Practical Deep Learning Examples with matlab



Download 5,05 Mb.
Pdf ko'rish
bet15/19
Sana22.07.2022
Hajmi5,05 Mb.
#836233
1   ...   11   12   13   14   15   16   17   18   19
Bog'liq
deep-learning-practical-examples-ebook

ImageMetrics.BFScore
.
Learn More
Semantic Segmentation Metrics
5. Evaluating the Network


25 | Practical Deep Learning Examples with MATLAB
To see how accurately the network identified individual classes of
images, we can look at the class metrics.
The chart shows that the categories Cars, Environment, and Road are 
classified with an accuracy of 90% or more. Poles, Signs, and Bicyclists 
are classified with an accuracy under 90%.
Depending on the application, this may be an acceptable result, or the 
network may need to be retrained with a higher emphasis on the classes 
that were misclassified. 
The cost of failure determines the level of accuracy required. For exam-
ple, while it might be acceptable for the visual system of a small robot to 
occasionally misclassify a person, it certainly would not be acceptable 
for a self-driving car to misclassify pedestrians.
Finally, we display the original, hand-labeled image next to the output of 
the trained network.
5. Evaluating the Network


26 | Practical Deep Learning Examples with MATLAB
We see some discrepancies—for example, the pole in the image on the 
right is misclassified as pavement. 
Depending on the final application, this network may be accurate 
enough, or we may have to go back and train more images on the dis-
crepancies we are interested in detecting more accurately. 
pic_num = 200;
I = readimage(imds, pic_num);
Ib = readimage(pxds, pic_num);
IB = labeloverlay(I, Ib, 
'Colormap'
, cmap, 
'Transparency'
,0.8);
figure
% Show the results of the semantic segmentation

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish