Practical Deep Learning Examples with matlab


options = trainingOptions(



Download 5,05 Mb.
Pdf ko'rish
bet14/19
Sana22.07.2022
Hajmi5,05 Mb.
#836233
1   ...   11   12   13   14   15   16   17   18   19
Bog'liq
deep-learning-practical-examples-ebook

options = trainingOptions(
'sgdm'

...
 

'Momentum'
, 0.9, 
...


'InitialLearnRate'
, 1e-2, 
...


'L2Regularization'
, 0.0005, 
...


'MaxEpochs'
, 120,
...


'MiniBatchSize'
, 4, 
...


'Shuffle'

'every-epoch'

...


'Verbose'
, false,
...


'Plots','training-progress'
);
4. Training the Network


24 | Practical Deep Learning Examples with MATLAB
We want to evaluate the accuracy of the network both quantitatively, by 
running it on test data and compiling metrics, and qualitatively, by visu-
alizing the test data results. 
We’ll use test data that was set aside before training to calculate the 
global accuracy: the ratio of correctly classified pixels to total pixels, 
regardless of class. 
The global accuracy metric shows that 92% of the pixels will be labeled 
correctly—but what about the individual classes of images? If the net-
work correctly identifies every street sign but misidentifies pedestrians, is 
that an acceptable result?
Network Accuracy Measures
• MeanAccuracy: Ratio of correctly classified pixels in each class to total pixels, aver-
aged over all classes. The value is equal to the mean of 
ClassMetrics.Accuracy
.
• MeanIoU: Average intersection over union (IoU) of all classes. The value is equal to the 
mean of 
ClassMetrics.IoU
.
• WeightedIoU: Average IoU of all classes, weighted by the number of pixels in the 
class.
• MeanBFScore: Average boundary F1 (BF) score of all images. The value is equal to the 
mean of 

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish