Practical Deep Learning Examples with matlab


Softmax provides probabilities for each category in the dataset. layers = [ imageInputLayer([28 28 1])



Download 5,05 Mb.
Pdf ko'rish
bet3/19
Sana22.07.2022
Hajmi5,05 Mb.
#836233
1   2   3   4   5   6   7   8   9   ...   19
Bog'liq
deep-learning-practical-examples-ebook

Softmax
provides probabilities for each category in the dataset.
layers = [ imageInputLayer([28 28 1])
convolution2dLayer(5,20)
reluLayer
maxPooling2dLayer(2, 
'Stride'
, 2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer() ]


6 | Practical Deep Learning Examples with MATLAB
Before training, we select training options. There are many
options available. 
The table shows the most commonly used options.
3. Training the Network
We specify two options: plot progress and minibatch size.
We then run the network and monitor its progress.
Training Options Definition
Hint
Plot of training 
progress
The plot shows the mini-
batch loss and accuracy. 
It includes a stop button 
that lets you halt network 
training at any point.
(
'Plots'
,
'training-progress'
)
Plot the progress of the network
as it trains.
Max epochs
An epoch is the full
pass of the training
algorithm over the entire 
training set. 
(
'MaxEpoch'
,20
)
The more epochs specified, the 
longer the network will train, but 
the accuracy may improve with 
each epoch.
Minibatch size
Minibatches are subsets 
of the training dataset 
that are processed on the 
GPU at the same time. 
(
'MiniBatchSize'
,64
)
The larger the minibatch, the faster 
the training, but the maximum size 
will be determined by the GPU 
memory. If you get a memory error 
when training, reduce the minibatch 
size.
Learning rate
This is a major parameter 
that controls the speed of 
training. 
A lower learning rate can give a 
more accurate result, but the net-
work may take longer to train.
TIP
A large dataset can slow down processing time. But a deep learning network can take 
advantage of the massively parallelized architecture of a GPU. The exact speedup will 
vary depending on factors like hardware, dataset size, and network configuration, but 
you could see training time reduced from hours to minutes. 
In the training options in MATLAB, you can quickly change the hardware resource to use 
for training a network. If this option is not specified, training will default to a single GPU if 
available.

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish