LIST OF ILLUSTRATIONS
SECTION Page
Figure 1.1. Oil production in different stages ......................................................................1
Figure 1.2. Illustration of a typical chemical flooding .........................................................2
Figure 1.3. Timeline for the Development of Polyacrylamides for Enhanced Oil
Recovery ............................................................................................................5
PAPER I
Figure 1. Key issues to be resolved to maximize oil recovery. .........................................11
Figure 2. Timeline for the development of Polyacrylamides for Enhanced Oil
Recovery. ...........................................................................................................14
Figure 3. Structure of monomer B in KYPAM..................................................................26
Figure 4. Structure of monomer in KYPAM. ....................................................................28
Figure 5. Schematic of AMVPPS copolymer conformations in aqueous NaCl
solution ...............................................................................................................32
Figure 6. Structure model of the gelation of polyacrylamide / nanoclay gelant
solution ...............................................................................................................35
Figure 7. Schematic illustration of force acting on a pair clay layers during
interaction. .........................................................................................................36
Figure 8. The sketch of a cross-linked network formation by ionic bonds using
the multivalent ion Cr (III) as example. .............................................................39
Figure 9. Sketch of a cross-linked network structure formed by covalent bonds
using formaldehyde as example. ........................................................................40
Figure 10. Mechanism of cross-linked network formation by the
copolymerization of PAM with
,
-poly (ethylene glycol) diacrylate
as example. .......................................................................................................41
xii
Figure 11. The Reaction Mechanism Between PAM and PEI ...........................................47
Figure 12. Mechanism of KYPAM-PEI crosslinking gelation reaction ............................49
Figure 13. Illustration of the fundamental difference between macro-gels and
micro-gels. .......................................................................................................52
Figure 14. Proposed swelling mechanism of an expandable polymer particle. .................52
Figure 15. The surfactant of inverse-emulsion polymerization of acrylamide
in ScCO
2
...........................................................................................................55
PAPER II
Fig. 1. Synthesis of N-alkylacrylamide............................................................................117
Fig. 2. Phase diagram: stable suspension of surfactant and monomer.............................123
Fig. 3. Schematic representation of the copolymerization mechanism in the
water-free S/O system ..........................................................................................124
Fig. 4. The SEM picture of crude poly-(acrylamide-co-octadecylacrylamide) ...............125
Fig. 5. Foruirer transfer infrad (FTIR) spectra of octadecylacrylamide,
acrylamide and poly-(acrylamide-
co
- octadecylacrylamide) ...............................127
Fig. 6. (a)
1
H NMR of ocadecylacrylamide (b)
1
H NMR and (c)
13
C NMR
spectra of poly-(acrylamide-
co
-octadecylacrylamide). .......................................128
Fig. 7. Thermogravimetric (TG) curves of the hydrophobically modified
copolymer. ...........................................................................................................130
Fig. 8. Apparent viscosity of aqueous solution as a function of copolymer
concentration.. ......................................................................................................131
PAPER III
Figure 1. Schematic diagram of the pore occlusion filtration test apparatus. ..................146
Figure 2. FTIR spectrum of polyacrylamide crosslinked microspheres. .........................148
xiii
Figure 3. Thermogravimetric curve of the PAM micro-gel dry spheres .........................149
Figure 4. a). SEM of polyacrylamide dry particles; b). Microscopic image
of swelled polyacrylamide microgels. ...............................................................151
Figure 5. Swelling kinetic and diameter change of crosslinked microgels in
DI water under 40 º
C and 80 º
C. ......................................................................152
Figure 6. Proposed swelling mechanism of the crosslinked microgels in
DI water at 40 º
C and 80 º
C. ..............................................................................153
Figure 7. Nuclear-pore modeling of pore occlusion performance ...................................156
Figure 8. Schematic diagrams of pore occlusion mechanisms ........................................159
Figure 9. SEM Picture of membranes after pore occlusion testing. ................................160
PAPER IV
Fig. 1 (a). The first network: polyacrylamide with N, N-methylene bisacrylamide
as crosslinker; (b). The second network: poly (vinyl alcohol) –
glutaraldehyde; (c). The representation of interpenetrating network of
PAM/PVA. .............................................................................................................173
Fig. 2 FTIR of (a) Pure PAM;(b) PVA-2%/PAM IPN; (c) PVA-10%/PAM IPN;
(d) PVA-15%/PAM IPN; (e) Pure PVA. ...............................................................174
Fig. 3 Scanning electron micrographs of PAM hydrogel and PAM/PVA IPN
hydrogel. ................................................................................................................175
Fig. 4 Elastic (G') and viscous (G") moduli vs. oscillation in the stress sweep
test. .........................................................................................................................176
Fig. 5 Influence of frequency on the elastic modulus (G’) and viscous modulus
(G’’) of PAM hydrogel and PAM/PVA IPNs........................................................178
Fig. 6 (a). Strain-stress curves of PAM hydrogel and PAM/PVA IPNs;
(b).Expanded strain-stress curves of PAM hydrogel .............................................179
Fig. 7 The swelling behavior of the PAM/PVA hydrogels. .............................................181
xiv
Fig. 8 Dependence of the effective crosslinking density (
v
e
) on the
concentration of PVA. ...........................................................................................186
Fig. 9 Dependence of the complex modulus on the concentration of PVA. ....................187
xv
Do'stlaringiz bilan baham: |