Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  specifying a network function



Download 5,69 Mb.
Pdf ko'rish
bet403/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   399   400   401   402   403   404   405   406   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

13.11.4 
specifying a network function
A network function 
H
(
s
) is specified in three ways. In the first method, it is specified as a ratio of 
rational polynomials in 
s
.
H s
b s
b
s
b s b
s
a s
a s a
m
m
m
m
o
n
n
n
o
( )
=
+
+ +
+
+
+ +
+




1
1
1
1
1
1
(13.11-3) 
In the second method, it is specified as the ratio of product of first-order factors in numerator and 
denominator with a gain factor multiplying the entire ratio.
H s
K
s z s z
s z
s p s p
s p
m
m
( )
(
)(
) (
)
(
)(
) (
)
=






1
2
1
2
(13.11-4) 
There are 
m
factors in the numerator and 
n
factors in the denominator. 
z
1
,
z
2
,…,
z
m
are the 
zeros 
of the 
network function
 
and 
p
1
,
p
2
,…,
p
n
are the 
poles
of the network function. Note that though the degree 
of denominator polynomial is shown as 
n
, which is the order of the circuit, pole-zero cancellation may 
take place leaving the denominator polynomial of network function with a degree less than 
n
.
In the third method of specifying a network function, the 
pole-zero plot 
along with the 
gain factor
K
is given. The gain factor 
K
may be directly given or indirectly in the form of value of 
H
(
s
) evaluated 
at a particular value of 
s
.
example: 13.11-1
The circuit shown in Fig. 13.11-1 is the small signal equivalent circuit of a transistor amplifier for 
analysis of its behaviour for sinusoidal input at high frequency. Obtain the transfer function between 
the output voltage and input source voltage.
v
S
(
t
)
v
o
(
t
)
v
x
0.08 
v
x



+
+
+
50 

2 k

1 k

2 k

50 

100 pF
5 pF
Fig. 13.11-1 
Small-signal equivalent circuit of a transistor amplifier in Example: 13.11-1 
Solution
We find the Norton’s equivalent of the circuit to the left of 100pF capacitor first.
50 

50 

1 k

2 k

v
s
(
t
)
50 

50 

1 k

2 k


+
Fig. 13.11-2 
Sub-circuits for determining Norton’s equivalent
The sub-circuits needed for determining this equivalent are shown in Fig. 13.11-2. The short-circuit 
current in the first circuit is 
v t
v t
s
s
( )
/ /
.
( )
50 2000 50
2000
2050
9 876 10
3
+
×
=
×

. The Norton’s equivalent 
resistance is [(50
W
//2k
W
)

50
W
] //1k
W = 
89.9 
W
. Thus the required Norton’s equivalent is 9.876
×
10
-3
v
S
(
t

A in parallel with 89.9 
W
. The original circuit with this Norton’s equivalent in place is shown in 


13.48
Analysis of Dynamic Circuits by Laplace Transforms
circuit of Fig. 13.11-3 (a) with 
R
1

89.9 
W

R
2

2 k
W

C
1

100 pF, 
C
2

5 pF and 
g
m

0.08. The 
corresponding 
s
-domain equivalent circuit is shown in circuit (b) of Fig. 13.11-3.
g
m
v
x
v
x
v
o
(
t
)
kv
s
(
t
)


+
+
(a)
C
1
C
2
R
1
R
2
g
m
V
(
s
)
V
(
s
)
v
o
(
s
)
kV
s
(
s
)


+
+
(b)
C
2
R
1
R
2
1
sC
2
1
sC
1
Fig. 13.11-3 
(a) Reduced version of circuit in Fig. 13.11-1 and (b) Its 
s
-domain equivalent
The node equations written for the two node voltage transforms 
V
(
s
) and 
V
o
(
s
) are as follows:
V s s C
C
R
V s
sC
kV s
V s
sC
g
V
o
s
m
o
( ) (
)
( )[
]
( )
( )[
]
(
1
2
1
2
2
1
+
+





 +

=

+
+
ss sC
R
s C
C
R
sC
sC
g
sC
R
m
)
(
)
2
2
1
2
1
2
2
2
2
1
0
1
1
+





 =
+
+


+
+

















 =






V s
V s
kV s
o
s
( )
( )
( )
0
Solving for 
V
o
(
s
) and simplifying the expression, we get
H s
V s
V s
k
C
s
s
s
o
s
g
C
g R
R C
R C
R C
m
m
( )
( )
( )
(
)
=
=

+
+
+
(
)
+
+
1
2
1
1
1
2
1
1 1
1
2 1
1
2
2
11
1
1 2 1 2
R R C C
(
)
Substituting the numerical values for various parameters, we get
H s
s
s
s
( )
.
(
.
)
.
(
.
)
=
×

×
+
×
+
×
98 76 10
1 6 10
1 016 10
105 47 10
6
10
2
9
6 2
The poles are at 
s
= -
10
9
nepers/s and 
s
= -
11.07
×
10
6
nepers/s. The zero is at 
s

1.6
×
10
10
nepers/s.
Note that compared to the pole at –11.07
×
10
6
the other pole and the zero are located two orders 
away from it. The natural response term contributed by the pole at 
s
= -
11.07
×
10
6
nepers/s will have a 
time constant of 90.3 ns whereas the natural response term contributed by the pole at 
s
= -
10
9
nepers/s 
will have a time constant of 1 ns. Thus the natural response term contributed by the pole at 
s
= -
10
9
nepers/s will disappear in about 5% of the time constant of the other term. Therefore, the time constant 
of 90.3 ns is the 
dominant time constant 
in this amplifier and the corresponding pole at –11.07
×
10
6
is the 
dominant pole
. The amplifier transfer function can be approximated by neglecting the zero and 
the non-dominant pole to 


Impulse Response of Network Functions from Pole-Zero Plots 
13.49
H s
s
s
s
s
( )
.
(
.
)
(
)(
.
)
.
(
=
×

×
+
+
×


×
98 76 10
1 6 10
10
11 07 10
1 58 10
6
10
9
6
9
++
×
= −
×
+
×




11 07 10
142 7
11 07 10
11 07 10
6
6
6
.
)
.
.
.
s
example: 13.11-2
Find (i) Input impedance function and (ii) 
V
o
s
V
s
s
( )
( )
in the circuit shown in Fig. 13.11-4.
Solution
Z s
s
s
s
s
s
s
s
s
s
i
( ) (
) //
(
)
(
)(
)
= +
+




=
+
+




+ +
=
+
+
1
1
1
1
1
1
2
1
1
1
2
++
+
=
2
1
1
s

This is a case of cancellation of all poles by zeros leaving 
a real value for a network function. The input impedance 
of the circuit is purely resistive at all values of 
s
. This 
implies that the current drawn by the circuit behaves as in a 
memoryless circuit. But, this does not mean that the order 
of the circuit is zero.
V s
V s
s
s
s
s
s
s
o
( )
( )
=
+

+
=

+
1
1
1
1
1
1
The voltage transfer function has a pole at 
s
= -
1 and zero at 
s

1.
This innocuous circuit challenges our notions on the order of a circuit. It contains two energy storage 
elements. Hence it must be a second-order circuit. But no network function defined in this circuit will 
be second-order function if the excitation is a voltage source. Even the zero-input response obtained 
by shorting the voltage source with initial conditions on inductor and capacitor will contain only 
e
-
t

The reader is encouraged to analyse the general situation that develops when many sub-circuits with 
same set of poles in their input admittance functions are connected in parallel and driven by a common 
voltage source. Similarly, he is encouraged to ponder over the order of a circuit resulting from series 
connection of many sub-circuits with the same set of poles in their input impedance functions driven 
by a common current source. The reader may also note that the current in the circuit in Fig. 13.11-4
will have 
e
-
t
and 
t e
-
t
terms in zero-input response due to initial energy storage in inductor and 
capacitor with input open-circuited (
i.e.,
zero-input response for current source excitation), thereby 
confirming it is a second-order circuit. 
13.12 
Impulse response of network functIons from pole-Zero plots
Let 
H s
K
s z s z
s z
s p s p
s p
m
m
( )
(
)(
) (
)
(
)(
) (
)
=






1
2
1
2
be a network function defined in a linear time-invariant 
circuit. Then the impulse response of this network function is given by its inverse transform.
The transform 
H
(
s

×
1 (1 is the Laplace transform of 
d
(
t
)) can be expressed in partial fractions as 
below.
V
o
(
t
)
V
S
(
t
)


+
+


1 H
1 F


Fig. 13.11-4 
Circuit for 
Example: 13.11-2 


13.50
Analysis of Dynamic Circuits by Laplace Transforms
H s
K
s z s z
s z
s p s p
s p
A
s p
A
s
m
m
( )
(
)(
) (
)
(
)(
) (
) (
) (
=






=

+
1
2
1
2
1
1
2
−−
+ +

p
A
s p
n
n
2
)
(
)
(13.12-1) 
We have assumed that all poles are non-repeating ones. If there are repeating poles we may assume 
that the poles are slightly apart by 
D
p
and evaluate the limit of 
h
(
t
) as 
D
p

0 after we complete the 
inversion. We will need a familiar limit 
lim
(
)



p
p
p t
pt
pt
e
e
p
te

+

=
0
for this. This strategy will help us to 
view all poles as non-repeating ones at the partial fractions stage.

=

=





=

+

H s
A
s p
A
K
s z
s z
s p
s p
s p
i
i
i
n
i
m
i
i
( )
(
)
;
(
) (
)
(
) (
)(
1
1
1
1
11
) (
)
s p
n
s p
i

=
(13.12-2)
Thus each pole contributes a complex exponential function to impulse response. The complex 
frequency of the complex exponential function contributed by a pole to impulse response is the same 
as the value of the pole frequency itself.
A point 
s
in the complex signal space (
i.e.,
the 
s
-plane) stands for the complex exponential signal 
e
st
for all 
t
. But, when a point 
s
is marked out as a pole of a network function by a ‘
×
’ mark, that signal 
point contributes 
e
st
u
(
t
) to the impulse response and not 
e
st
. Thus, a point in signal space stands for 
a two-sided complex exponential signal in general and stands for a right-sided complex exponential 
signal when that point is specified as a pole of a network function. 
The evaluation of residue 
A
i
at the pole 
p
i
involves the evaluation of product of terms like (
p
i
-
z
1
)… (
p
i
-
z
1
) and (
p
i
-
p
1
)… (
p
i
-
p
i
-1
) (
p
i
-
p
i

1
)… (
p
i
-
p
n
). Each of these factors will be a complex number. 
For instance, consider (
p
i
-
z
1
). This is a complex number that can be represented by a 
directed line
drawn from the point 
s

z
1
in 
s
-plane to the point 
s

p
i
in the 
s
-plane with the arrow of the line at 
s

p
i
. The length of this line gives the magnitude of the complex number (
p
i
-z1) and the angle of 
the complex number (
p
i
-
z
1
) is given by the angle the line makes with the positive real axis in the 
counter-clockwise direction. The magnitude of product of complex numbers is product of magnitudes 
of individual numbers. The angle of product of complex numbers is the sum of angles of individual 
complex numbers. Therefore, evaluation of residue 
A
i
at the pole 
p
i
reduces to determining certain 
lengths and angles in the pole-zero plot of the network function.
The reasoning employed in the paragraph above also reveals the roles of poles and zeros of a 
network function in deciding the impulse response terms. 
The poles decide the number of terms in 
impulse response and their complex frequencies. The zeros along with the poles and gain factor K 
decide the amplitude of each impulse response term.
A network function is a stable one if its impulse response decays to zero with time. This is 
equivalent to stating that its impulse response must be absolutely integrable, 
i.e.,
| ( ) |
h t dt
0


must be 
finite. Therefore, a network function is stable if all the impulse response terms are damped ones. That 
is, all the poles must have negative real values or complex values with negative real parts. 
Therefore, a 
network function is stable if and only if all its poles are in the left-half of s-plane excluding the j
w
-axis.
Note that a stable network function in a linear time-invariant circuit does not necessarily imply that 
the circuit itself is stable. A linear time-invariant circuit is stable only if 
all
the network functions that 
can be defined in it are stable ones. That is, a stable circuit will have only stable network functions in 
it. But, an unstable circuit can have both stable and unstable network functions in it.
The graphical interpretation adduced to impulse response coefficients in this section is illustrated 
in the examples that follow.


Impulse Response of Network Functions from Pole-Zero Plots 
13.51

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   399   400   401   402   403   404   405   406   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish