Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet319/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   315   316   317   318   319   320   321   322   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

t
1
Since this equation is true for all t (it is a KVL equation), we can integrate both sides from 
-∞
to 
t and write
di t
dt
dt
i t dt
L
v
t dt
t
t
t
SU
t
L
L
for all 
( )
( )
( )




+
=
−∞
−∞
−∞



1
1
t
Changing the order of integration and differentiation
d
dt
i t dt
i t dt
L
v
t dt
t
t
t
SU
t
L
L
for all 
( )
( )
( )
−∞
−∞
−∞



+
=
1
1
t
Let
and
then
L
L
ˆ ( )
( )
ˆ ( )
( ) ,
i t
i t dt
v
t
v
t dt
t
SU
SU
t
=
=
−∞
−∞


di t
dt
i t
L
v
t
t
SU
ˆ ( ) ˆ ( )
ˆ ( )
L
L
for all 
+
=
t
1
The last equation is the differential equation describing the zero-state response for integrated input 
function. 
Therefore, we can state that the zero-state response in a linear circuit for an integrated 
input function is equal to integral of the zero-state response for the input function. 


Unit Impulse Response of Series 
RL
Circuit 
10.39
Strictly speaking, we showed this only for a first-order differential equation; but there is nothing 
in the proof which limits it to first-order differential equation alone. This result is valid for any 
linear lumped circuit described by linear differential equation of any order. The integration has to be 
performed from 
-∞
in theory. However, since we know that the zero-state response is zero from 
-∞
to 
t 

0
-
, we need to integrate from t 

0
-
to only.
Integral of 
d
(t) gives u(t). Therefore, integral of impulse response should give unit step response 
(usually referred to as the step response). This is verified by carrying out the integration below.
Zero-state unit impulse response of an RL circuit 
=

1
L
e
t
/
t
ffor
and for
Integrating for a 
,
t
t
t
 dt
a


>
+
+

+


0
0
0
0
0
0


(
bbounded number dt
L
e
dt
L
e
R
e
t
t
t
t
)
(
)
(
/
/
/
+
=

=




+
+


1
1
1
1
0
0
0
t
t
t

tt
) for 
t

+
0
Unit ramp input function is defined as 
r t
t
t
t
( )
=
<




0
0
0
for
for
.
It can be easily verified that unit ramp function is the integral of unit step function. These three 
basic input functions and their relations are shown in Fig. 10.7-2. 
t
(
t
)
δ
1
u
(
t
)
1
d
t
d
t
t
d
t
d
(
t
)
r
1
1
Fig. 10.7-2 
Impulse, step and ramp functions and their relations
Therefore, the ramp response can be found by integrating the step response as below.
Ramp response
for
=

=





+



+
1
1
1
1
0
0
R
e
dt
R
t
e
t
t
t
t
(
)
(
)
/
/
t
t
t
Ramp response and its components are shown in Fig. 10.7-3. The voltage across resistor is plotted 
instead of inductor current.
The unit ramp function has a kink at t 

0 and hence it is not differentiable at t 

0. However, 
it is differentiable at all other time instants. Hence, first 
derivative of r(t) will be a function defined as 0 for t 

0
-
,
1 for t 

0

and undefined at t 

0. But that is the unit step 
function. Therefore, unit step function is the first derivative 
of unit ramp function.
Unit step function is not even continuous at

0. 
Obviously, it cannot be differentiated there. However, we 
raise the question – which function when integrated will 
yield unit step function? The answer is that it is the impulse 
function. Therefore, we can consider 
d
(t) to be the first 
derivative of u(t) in the ‘anti-derivative’ sense.
Fig. 10.7-3 
Unit ramp response 
of 
RL
circuit
v
R
(
t
)
t
t
t – 
(1 – e )
 
τ

τ
(1 – e )
 
–t
τ
τ
t


10.40
First-Order 
RL
Circuits
KVL equations are true for all t. Both sides of an equation which holds for all t can be differentiated 
with respect to time. From this observation, it is easy to see that the following is true.
The zero-state response in a linear circuit for differentiated input function is equal to 
the derivative of the zero-state response for the input function.
Therefore, we can get to unit step response and unit impulse response in any linear circuit by 
successive differentiation of its unit ramp response.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   315   316   317   318   319   320   321   322   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish