Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet29/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   25   26   27   28   29   30   31   32   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar



1.11
Thus, electrons act as a medium for transferring energy from source to conductor. The electrostatic 
field present everywhere in the system is a facilitator of this energy transfer process. The non-
electrostatic field in the source transfers the source energy into charge carriers flowing through it in 
the form of potential energy of the charged particles in an electrostatic field. The charged particles 
carry this potential energy with them into the conductor. The non-electrostatic force (i.e., the average 
effect of inelastic collisions) absorbs the potential energy of charges and transfers it to the lattice. 
The electrostatic field that is present within the conductor facilitates this process by converting the 
potential energy of charged particles into kinetic energy before they can deliver it to atoms through 
inelastic collision process.
Thus,electrostaticfieldpermeatingthroughoutthesystemisanecessaryrequirement
for conduction and energy transfer process to take place in an electrical system. The
required electrostatic field is created by surface charge distributions on conducting
surfaceseverywhereinthesystem.
1.2.5 
two-terminal resistance Element
Consider the steady voltage source with resistive load across 
it shown in Fig. 1.2-3.
Let us work out the electrostatic potential difference 
between e and f.
Work to be done against electrostatic force to carry a unit 
positive test charge around a closed path is zero. Therefore, 
the work to be done to take 
+
1 C charge from f to e must be 
the same whether we move it through a path that lies inside 
the conducting substance or outside. But the electrostatic 
field is given by E
J
s
=
s
inside the conductor. Therefore, 
V
J dl
ef
f
e
= −

1
s
i
with dl oriented from f to e. The value of 
this integral will be same for any path through the conducting 
substance. However, evaluation of the integral to yield a closed-form result will be possible only in 
simple cases where the geometry of conductor has some kind of symmetry or other.
We consider a simple case of a conductor with uniform cross-section. The total current may be 
assumed to distribute itself uniformly throughout the cross-section in such a conductor. This results 
in a current density vector that has a constant magnitude of I/A (A is the area of cross-section) and 
direction parallel to the axis of conductor. This is a satisfactory assumption everywhere except at the 
connection ends. With this assumption, with l as the length of conductor and A as its uniform cross-
sectional area, we get,
 
V
J dl
l
A
I
l
A
f
e
ef
I
= −
=





1
s
s
r
i
or
V.
 
(1.2-2)
Fig. 1.2-3 

Pertainingtovoltage
acrossatwo-
terminalresistance
B
c
d
e
f
a
b
A
www.TechnicalBooksPDF.com


1.12


CircuitVariablesandCircuitElements
Eqn. 1.2-2 relates the electrostatic potential difference across the connection points of a piece of 
conductor with uniform cross-section to the current flow through it. The proportionality constant 
is dependent on material property (conductivity or resistivity) and geometry of the conductor. This 
proportionality constant is called the resistance parameter R.
 
R
l
A
l
A
=
=
s
r
Ohm
(1.2-3)
However, actual connection point between the resistive material and external circuit may not be 
accessible for observation of voltage. We measure the voltage across a resistance by connecting a 
voltmeter to the connecting wire on either side of the element. Assume that the voltmeter is connected 
across a-c. Then, the voltmeter will read the electrostatic potential difference V
ac
. But,
V
V
J dl
J dl
ac
ef
a
e
d
c
=
+ −







1
1
s
s
i
i
evaluated over ppaths through
connecting wire
.
Therefore, a unique voltage difference can be assigned to the conducting body only if the 
conductivity of connecting wires is infinitely large. However, it is to be noted that this does not imply 
thick connecting wires. In fact, Circuit Theory assumes that connecting wires have zero resistance 
and negligible thickness. The reason behind the assumption of negligible cross-section for connecting 
wires will be explained in a later section.
With this assumption, the electrostatic field inside 
connecting wires will be zero (since conductivity is infinite). 
Then, the electrostatic potential difference between the ends 
of conducting body has a unique value irrespective of which 
pair of points (a and b) on the connecting wire are chosen to 
measure it.
Now a unique voltage and current variable pair can be 
assigned to the conducting body and its electrical behaviour 
can be described entirely in terms of these two variables. This 
model of a conducting body is called the two-terminal resistance 
element model. The symbol and element relation is shown in 
Fig. 1.2-4.
Ohm’s Law, which is an experimental law, states that the voltage drop across a two-
terminalresistancemadeofalinearconductingmaterialandmaintainedataconstant
temperatureisproportionaltothecurrententeringtheelementatthehigherpotential
terminal.
Resistivity and Conductivity are functions of temperature. If the temperature range considered 
is small, resistivity may be approximated as 
r
(T)

r
(T
0
)[1

a
(T

T
0
)] where 
r
(T
0
) is the known 
resistivity at temperature T
0
and 
a
is the temperature coefficient of resistivity.
Fig. 1.2-4 

Two-terminal
resistance
R
v = Ri 
(Ohm’s Law)
v
i
+

www.TechnicalBooksPDF.com


AVoltageSourcewithaResistanceConnectedatitsTerminals

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   25   26   27   28   29   30   31   32   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish