Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet207/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   203   204   205   206   207   208   209   210   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

Z
V
I
(
)
(
)
j
V
I
e
j
v
i
w
f f
=
=







m
m
and the phasor 
admittance function 
Y
I
V
(
)
)
j
I
V
j
i
v
w
f f
=
=







m
m
(
e
. Note that both impedance function and admittance 
function is represented as functions of j
w
. They are in fact complex functions of a real variable 
w
and 
not complex functions of an imaginary variable j
w
as indicated by the notation. The j in j
w
serves to 
remind us they are complex functions.
The magnitude of the complex 
Z
gives the ratio of amplitudes of voltage phasor and current phasor. 
The angle of 
Z
gives the angle by which the current lags the voltage phasor.
The real part of 
Z
 
is the resistance part of 
Z
and the imaginary part of 
Z
is defined as its reactance 
part. Similarly, the real part of 
Y
 
is the conductance part of 
Y
and the imaginary part of 
Y
is defined as 
its susceptance part. Thus 
Z
 
=
 
R 

jX and 
Y
=
G 

jB where X is the reactance and B is the susceptance. 
Reactance has ohms as its unit and susceptance has siemens as its unit.
We have already derived the relation between voltage and current phasors for Rand C earlier. 
Thus we conclude the following with the help of Eqns. 7.4-1 to 7.4-3.
Z
(
j
w
) 
=
R
and 
Y
(
j
w
) 
=
1/
R
for a resistor of 
R

.
Z
(
j
w
) 
=
j
w
L
and 
Y
(
j
w
) 
=
1/
j
w
L
for an inductor of 
L
henries.

Z
(
j
w
) 
=
1/
j
w
C
and 
Y
(
j
w
) 
=
j
w
C
for a capacitor of 
C
farads.
The phasor equivalent circuit is formed by carrying out the following steps:
1. Convert all sinusoidal sources at a single frequency 
w
into their phasor representations and mark 
them near the source symbols. There is no change in the graphic symbols used. Cosine function 
is assumed in time-domain by default.
2. Replace all passive elements by their phasor impedance/admittance and linear dependent sources 
by their phasor relations. The graphic symbols used for all elements will be the same in the 
original circuit and in its phasor equivalent circuit.


Sinusoidal Steady-State Response from Phasor Equivalent Circuit 
7.17
The procedure is illustrated for the circuit in Fig. 7.5-2.
The first source function 200 sin 314t is expressed as 200 cos (314t 
-
90
°
). Then the first source 
voltage phasor is 200 
j9

in exponential form, 200 
∠-
90
° 
in polar form and 0
-
j 200 in rectangular 
form.
The second source function 250 sin(314t
-
45
°
) is expressed as 250 cos(314t 
-
135
°
). Then the 
second source voltage phasor is 250 
-
j135
°
in exponential form, 200 
∠-
135
° 
in polar form and – 
176.77 

j 176.77 in rectangular form.
The value of 
w
=
314 rad/s. Therefore the 4mH inductor will have an impedance of j1.256 

, the 
5mH inductor will have j1.57 

and the 10mH inductor will have j3.14

. The impedance of 100
m

capacitor will be 1/j0.0314 
=
-
j 31.85 

.
We see that impedances of inductor and capacitor are purely reactive. The reactance of an inductor 
is a positive quantity, whereas the reactance of a capacitor is a negative quantity. Similarly, the 
susceptance of an inductor is a negative quantity, whereas the susceptance of a capacitor is a positive 
quantity.
The phasor equivalent circuit of the circuit in Fig. 7.5-2 is now completed as in Fig. 7.5-3. 

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   203   204   205   206   207   208   209   210   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish