Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet140/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   136   137   138   139   140   141   142   143   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

V
2
Fig. 4.7-2 
Circuit for illustrating mesh analysis
The KVL equations for the three windows designated by M
1
M
2
and M
3
 in this circuit are given 
below.
Window M
Window M
Window M
1
2
3
:
:
− +

+
=
− +

+ =
V
v
v
V
V
v
v
V
R
R
R
R
1
2
2
3
1
2
3
4
0
0
::
− +
+
+
=
V
v
v
V
R
R
3
4
4
5
0
These equations form an independent set of (b

n

1) 
=
(9

7

1) 
=
3 KVL equations for the 
circuit. They are independent since each equation contains at least one element voltage variable that is 
not contained in the other two. This is so since the element R
1
is completely owned by first window, the 
element R
3
is completely owned by second window and the element R
5
is completely owned by third 
window. If an element is not shared among many windows and is completely owned by a particular 


Mesh Analysis of Circuits with Resistors and Independent Voltage Sources 
4.29
window, its voltage variable will appear only in the KVL equation of that particular window. However, 
that KVL equation cannot be generated by linearly combining KVL equations for other windows.
Thus, the KVL equations for the windows of a circuit will be the required set of independent 
equations provided each window contains at least one element that is totally owned by it. The windows 
in a planar circuit are called Meshes. It is possible to prove that in a planar connected network 
containing b elements and n nodes there will be exactly (b

n

1) meshes.
However, is it not possible for a mesh to have no element that is completely owned by it? It is 
possible. See Fig. 4.7-3. The mesh M
2
does not own any element. However, the four mesh KVL 
equations will be independent in this case too. This is so since no linear combination of three equations 
for the other three meshes can get rid of 
v
R
6
or V
1
or V
4
.
M1
+
+


+
+
+
+
+


+




M2
M4
M3
R
3
R
3
i
R
4
R
4
i
R
5
R
5
i
R
1
R
1
i
R
2
R
2
i
R
1
v
R
3
v
R
6
v
R
5
v
R
4
v
R
2
v
V
1
V
4
Fig. 4.7-3 
Circuit with a mesh that does not own any element
Hence, we accept the fact that KVL equations for (b

n

1) meshes in a planar circuit will form 
a linearly independent set of equations without further discussion.
Let us take up the issue of defining (b

n

1) special currents that can be used to express all 
the element currents in the circuit. We can think of categorising all the elements that participate in a 
mesh into two groups – the first group contains those elements which appear only in that mesh and 
the second group contains those elements shared by this mesh with other meshes. Obviously, same 
current flows through all the elements belonging to first group. They are in series combination. Thus, 
each mesh will have a clearly identifiable current that flows in all the elements completely owned by 
that mesh. This current, with clockwise direction assumed, is defined as mesh current for that mesh 
and is used as the describing variable in Mesh Analysis just as node voltage was used as the describing 
variable in Nodal Analysis. 
Refer to Fig. 4.7-2. We can derive the following equations by applying KCL at various nodes in 
this circuit.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   136   137   138   139   140   141   142   143   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish