Using a Genetic Algorithm with a Mathematical Programming Solver to Optimize a Real Water Distribution System



Download 4,2 Mb.
Pdf ko'rish
bet29/39
Sana29.12.2021
Hajmi4,2 Mb.
#81374
1   ...   25   26   27   28   29   30   31   32   ...   39
Bog'liq
Using a Genetic Algorithm with a Mathematical Prog

Figure 7. Mutation operator procedure. 

Algorithm 1 shows the genetic algorithm. First, the algorithm initializes the input parameters

such as crossover probability  (𝑷

𝒄

), mutation probability  (𝑷



𝒎𝒖𝒕

), population size  (𝑻

𝒑𝒐𝒃

), number of 



generations  (𝑵

𝒈

) , average of selection (𝑷



𝒔

) , and average of mutation (𝑷

𝒎

) . The termination 



criterion of the algorithm was set as 100 generations. This value was enough to reach an 

asymptotically low value of the objective function. It meant that the convergence of the algorithm 

was generally reached before 100th generation, so this value was assigned as the termination 

criterion, as a result of a tuning process. The instance data is loaded and the initial configuration is 

created. The values used in the initial configuration depend on the sensitivity analysis that was 

performed for the input parameters. The algorithm then generates a random initial population of 

individuals (Line 5). The feasibility of individuals in the population is evaluated using the EPANET 

functions in Linux platforms [29]. The fitness value is evaluated for each individual (Line 7). 

Individuals evolve over generations due to three operators: selection, crossing, and mutation. A 

tournament selection method is used (Line 12) in which the most suitable individuals are selected. 

The selected parents are then recombined to form offspring individuals who inherit the 

characteristics of their parents, using the GIBI crossover operator (line 13). A probability factor  (𝑷

𝒄

), 


determines whether the crossing is carried out or not. After the crossing, the feasibility of the 

individuals is evaluated using EPANET. Later, the mutation is performed on a percentage of 



Figure 7.

Mutation operator procedure.

Algorithm 1 shows the genetic algorithm. First, the algorithm initializes the input parameters,

such as crossover probability

(


Download 4,2 Mb.

Do'stlaringiz bilan baham:
1   ...   25   26   27   28   29   30   31   32   ...   39




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish