b) Aniqmas integralning differensiali
integral ostidagi ifodaga, aniqmas integralning hosilasi esa integral ostidagi
funksiyaga teng:
x
f
dx
x
f
dx
x
f
dx
x
f
d
,
(8.2)
c) Funksiyalar algebraik yig’indisining (ayirmasining) aniqmas integrali bu funksiyalar
aniqmas integrallarining
yig’indisiga (ayirmasiga) teng:
dx
x
g
dx
x
f
dx
x
g
x
f
(8.3)
d) o’zgarmas ko’paytuvchi aniqmas integral belgisidan tashqariga chiqarish mumkin
const
a
:
const
a
dx
x
f
a
dx
x
af
,
(8.4)
e) agar
C
x
F
dx
x
f
bo’lib,
x
u
uzluksiz hosilaga ega bo’lgan istalgan ma’lum funksiya bo’lsa,
C
u
F
du
u
f
(8.5)
bo’ladi.
3
. Integrallashning asosiy formulalari.
C
dx
0
(8.6)
C
x
dx
(8.7)
1
;
1
1
n
C
n
x
dx
x
n
n
(8.8)
C
x
x
dx
ln
(8.9)
1
;
0
;
ln
a
a
C
a
a
dx
a
x
x
(8.10)
C
e
dx
e
x
x
(8.11)
C
x
xdx
cos
sin
(8.12)
C
x
xdx
sin
cos
(8.13)
C
tgx
x
dx
2
cos
(8.14)
C
ctgx
x
dx
2
sin
(8.15)
0
;
;
ln
2
1
2
2
a
a
x
a
C
a
x
a
x
a
a
x
dx
(8.16)
C
a
x
x
a
x
dx
2
2
2
2
ln
(8.17)
C
a
x
x
a
dx
arcsin
2
2
(8.18)
C
a
x
arctg
a
a
x
dx
1
2
2
(8.19)
C
x
tg
x
dx
2
ln
sin
(8.20)
C
x
tg
x
dx
4
2
ln
cos
(8.21)
C
chx
shxdx
(8.22)
C
thx
x
ch
dx
2
(8.23)
C
cthx
x
sh
dx
2
(8.24)
Yoyish yo`li bilan integrallash berilgan integralni sodda integrallarning yigindisiga keltirishdan iboratdir.
4
.
Bevosita integrallash
. Bevosita integrallash jadval integrallaridan bevosita foydalanishga asoslangandir. Bu yerda
quyidagi hollar ro’y berishi mumkin:
a) berilgan integral tegishli jadval integrali yordamida topiladi;
b) berilgan integralga (8.3) va (8.4) xossalarni qo’llanilgandan so’ng bir yoki bir necha jadval integraliga keltiriladi;
v) berilgan integral integral osti funksiya ustida elementar shakl almashtirishdan so’ng (8.3) va (8.4)
xossalar
qo’llanilgandan bir yoki bir nechta jadval integraliga keltiriladi.
“A” guruh
1-10 Ushbu aniqmas integrallarni topib, to’g’riligini differensiallash yordamida tekshiring.
8.1.
dx
х
х
х
4
3
3
4
2
3
8.2.
2
3
2
5
8
2
5
x
x
x
8.3.
dx
x
x
x
3
3
4
2
8.4.
dx
x
x
x
3
2
4
4
3
8.5.
dx
x
x
x
3
2
3
6
5
3
7
8.6.
dx
x
x
6
4
3
3
5
1
8.7.
dx
x
x
x
3
3
5
2
1
3
2
8.8.
dx
x
x
5
3
2
1
4
4
8.9.
dx
x
x
x
4
6
5
8
7
2
8.10.
dx
x
x
x
6
6
6
3
7
5
2
“B” guruh
Aniqmas integrallarni toping
.
8.11
xdx
x
sin
cos
8.21
dx
x
x
2
cos
sin
8.12
x
dx
x
3
)
(ln
8.22
dx
x
x
3
2
3
2
8.13
dx
x
arctgx
2
1
8.23
dx
x
x
3
4
3
5
8.14
dx
x
x
3
sin
cos
8.24
dx
e
x
x
1
2
3
8.15
xdx
e
x
2
8.25
dx
x
x
1
8
4
3
8.16
dx
x
x
4
2
8.26
dx
x
x
3
2
2
8.17
x
dx
x
ln
8.27
2
2
1
arcsin
x
dx
x
Do'stlaringiz bilan baham: