C++ Neural Networks and Fuzzy Logic: Preface



Download 1,14 Mb.
Pdf ko'rish
bet70/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   66   67   68   69   70   71   72   73   ...   443
Bog'liq
C neural networks and fuzzy logic

Figure 4.1

  Layout of a Hopfield Network

The two patterns we want the network to have stable recall for are A = (1, 0, 1, 0) and B = (0, 1, 0, 1). The

weight matrix W is given as follows:

               0    −3     3     −3

     W     =  −3     0    −3      3

               3    −3     0     −3

              −3     3    −3      0



NOTE:  The positive links (values with positive signs) tend to encourage agreement in a

stable configuration, whereas negative links (values with negative signs) tend to discourage

agreement in a stable configuration.

We need a threshold function also, and we define it using a threshold value, [theta], as follows:

                  1  if t >= [theta]

     f(t) =  



{

                  0  if t < [theta]

C++ Neural Networks and Fuzzy Logic:Preface

Chapter 4 Constructing a Neural Network

54



The threshold value [theta] is used as a cut−off value for the activation of a neuron to enable it to fire. The

activation should equal or exceed the threshold value for the neuron to fire, meaning to have output 1. For our

Hopfield network, [theta] is taken as 0. There are four neurons in the only layer in this network. The first

node’s output is the output of the threshold function. The argument for the threshold function is the

activation of the node. And the activation of the node is the dot product of the input vector and the first

column of the weight matrix. So if the input vector is A, the dot product becomes 3, and f(3) = 1. And the dot

products of the second, third, and fourth nodes become –6, 3, and –6, respectively. The corresponding outputs

therefore are 0, 1, and 0. This means that the output of the network is the vector (1, 0, 1, 0), which is the same

as the input pattern. Therefore, the network has recalled the pattern as presented. When B is presented, the dot

product obtained at the first node is –6 and the output is 0. The activations of all the four nodes together with

the threshold function give (0, 1, 0, 1) as output from the network, which means that the network recalled B

as well. The weight matrix worked well with both input patterns, and we do not need to modify it.




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   66   67   68   69   70   71   72   73   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish