C++ Neural Networks and Fuzzy Logic: Preface


C++ Neural Networks and Fuzzy Logic



Download 1,14 Mb.
Pdf ko'rish
bet417/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   413   414   415   416   417   418   419   420   ...   443
Bog'liq
C neural networks and fuzzy logic

C++ Neural Networks and Fuzzy Logic

by Valluru B. Rao

MTBooks, IDG Books Worldwide, Inc.



ISBN: 1558515526   Pub Date: 06/01/95

Previous Table of Contents Next



Crisp and Fuzzy Neural Networks for Handwritten Character Recognition

Paul Gader, Magdi Mohamed, and Jung−Hsien Chiang combine a fuzzy neural network and a crisp neural

network for the recognition of handwritten alphabetic characters. They use backpropagation for the crisp

neural network and a clustering algorithm called K−nearest neighbor for the fuzzy network. Their

consideration of a fuzzy network in this study is prompted by their belief that if some ambiguity is possible in

deciphering a character, such ambiguity should be accurately represented in the output. For example, a

handwritten “u” could look like a “v” or “u.” If present, the authors feel that this ambiguity should be

translated to the classifier output.

Feature extraction was accomplished as follows: character images of size 24x16 pixels were used. The first

stage of processing extracted eight feature images from the input image, two for each direction (north,

northeast, northwest, and east). Each feature image uses an integer at each location that represents the length

of the longest bar that fits at that point in that direction. These are referred to as bar features. Next 8x8

overlapping zones are used on the feature images to derive feature vectors. These are made by taking the

summed values of the values in a zone and dividing this by the maximum possible value in the zone. Each

feature image results in a 15,120 element feature vectors.

Data was obtained from the U.S. Postal Office, consisting of 250 characters. Results showed 97.5% and

95.6% classification rates on training and test sets, respectively, for the neural network. The fuzzy network

resulted in 94.7% and 93.8% classification rates, where the desired output for many characters was set to

ambiguous.


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   413   414   415   416   417   418   419   420   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish