C++ Neural Networks and Fuzzy Logic: Preface


The S&P 500 and Sunspot Predictions



Download 1,14 Mb.
Pdf ko'rish
bet328/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   324   325   326   327   328   329   330   331   ...   443
Bog'liq
C neural networks and fuzzy logic

The S&P 500 and Sunspot Predictions

Michael Azoff in his book on time−series forecasting with neural networks (see references) creates neural

network systems for predicting the S&P 500 index as well as for predicting chaotic time series, such as

sunspot occurrences. Azoff uses feedforward backpropagation networks, with a training algorithm called



adaptive steepest descent, a variation of the standard algorithm. For the sunspot time series, and an

architecture of 6−5−1, and a ratio of training vectors to trainable weights of 5.1, he achieves training set error

of 12.9% and test set error of 21.4%. This series was composed of yearly sunspot numbers for the years 1706

to 1914. Six years of consecutive annual data were input to the network.

One network Azoff used to forecast the S&P 500 index was a 17−7−1 network. The training vectors to

trainable weights ratio was 6.1. The achieved training set error was 3.29%, and on the test set error was

4.67%. Inputs to this network included price data, a volatility indicator, which is a function of the range of

price movement, and a random walk indicator, a technical analysis study.




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   324   325   326   327   328   329   330   331   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish