C++ Neural Networks and Fuzzy Logic: Preface


Table 10.1 Categorization of Inputs inputwinner in F



Download 1,14 Mb.
Pdf ko'rish
bet225/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   221   222   223   224   225   226   227   228   ...   443
Bog'liq
C neural networks and fuzzy logic

Table 10.1 Categorization of Inputs

inputwinner in F

2

 layer

0 1 0 0 0 00, no reset

1 0 1 0 1 01, no reset

0 0 0 0 1 01, after reset 2

1 0 1 0 1 01, after reset 3

The input pattern 0 0 0 0 1 0 is considered a subset of the pattern 1 0 1 0 1 0 in the sense that in whatever

position the first pattern has a 1, the second pattern also has a 1. Of course, the second pattern has 1’s in other

positions as well. At the same time, the pattern 1 0 1 0 1 0 is considered a superset of the pattern 0 0 0 0 1 0.

The reason that the pattern 1 0 1 0 1 0 is repeated as input after the pattern 0 0 0 0 1 0 is processed, is to see

what happens with this superset. In both cases, the degree of match falls short of the vigilance parameter, and

a reset is needed.

Here’s the output of the program:

THIS PROGRAM IS FOR AN ADAPTIVE RESONANCE THEORY

1−NETWORK. THE NETWORK IS SET UP FOR ILLUSTRATION WITH SIX INPUT NEURONS

AND SEVEN OUTPUT NEURONS.

*************************************************************

Initialization of connection weights and F1 layer activations. F1 layer

connection weights are all chosen to be equal to a random value subject

to the conditions given in the algorithm. Similarly, F2 layer connection

weights are all chosen to be equal to a random value subject to the

conditions given in the algorithm.

*************************************************************

weights for F1 layer neurons:

1.964706  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

1.964706  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

1.964706  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

1.964706  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

1.964706  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

1.964706  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

weights for F2 layer neurons:

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

C++ Neural Networks and Fuzzy Logic:Preface

Program Output

213



0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

activations of F1 layer neurons:

−0.357143 −0.357143 −0.357143 −0.357143 −0.357143 −0.357143

*************************************************************

A new input vector and a new iteration

*************************************************************

Input vector is:

0 1 0 0 0 0

activations of F1 layer neurons:

0   0.071429   0   0   0   0

outputs of F1 layer neurons:

0   1   0   0   0   0

winner is 0

activations of F2 layer neurons:

0.344444   0.344444   0.344444   0.344444   0.344444   0.344444   0.344444

outputs of F2 layer neurons:

1   0   0   0   0   0   0

activations of F1 layer neurons:

−0.080271   0.013776   −0.080271   −0.080271   −0.080271   −0.080271

outputs of F1 layer neurons:

0   1   0   0   0   0

*************************************************************

Top−down and bottom−up outputs at F1 layer match, showing resonance.

*************************************************************

degree of match: 1 vigilance:  0.95

weights for F1 layer neurons:

0  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

1  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

0  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

0  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

0  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

0  1.964706  1.964706  1.964706  1.964706  1.964706  1.964706

winner is 0

weights for F2 layer neurons:

0  1  0  0  0  0

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

learned vector # 1  :

0  1  0  0  0  0

*************************************************************

A new input vector and a new iteration

*************************************************************

Input vector is:

1 0 1 0 1 0

C++ Neural Networks and Fuzzy Logic:Preface

Program Output

214



activations of F1 layer neurons:

0.071429   0   0.071429   0   0.071429   0

outputs of F1 layer neurons:

1   0   1   0   1   0

winner is 1

activations of F2 layer neurons:

0   1.033333   1.033333   1.033333   1.033333   1.033333   1.033333

outputs of F2 layer neurons:

0   1   0   0   0   0   0

activations of F1 layer neurons:

0.013776   −0.080271   0.013776   −0.080271   0.013776   −0.080271

outputs of F1 layer neurons:

1   0   1   0   1   0

*************************************************************

Top−down and bottom−up outputs at F1 layer match,

showing resonance.

*************************************************************

degree of match: 1 vigilance:  0.95

weights for F1 layer neurons:

0  1  1.964706  1.964706  1.964706  1.964706  1.964706

1  0  1.964706  1.964706  1.964706  1.964706  1.964706

0  1  1.964706  1.964706  1.964706  1.964706  1.964706

0  0  1.964706  1.964706  1.964706  1.964706  1.964706

0  1  1.964706  1.964706  1.964706  1.964706  1.964706

0  0  1.964706  1.964706  1.964706  1.964706  1.964706

winner is 1

weights for F2 layer neurons:

0  1  0  0  0  0

0.666667  0  0.666667  0  0.666667  0

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

learned vector # 2  :

1  0  1  0  1  0

*************************************************************

A new input vector and a new iteration

*************************************************************

Input vector is:

0 0 0 0 1 0

activations of F1 layer neurons:

0   0   0   0   0.071429   0

outputs of F1 layer neurons:

0   0   0   0   1   0

winner is 1

activations of F2 layer neurons:

0   0.666667   0.344444   0.344444   0.344444   0.344444   0.344444

C++ Neural Networks and Fuzzy Logic:Preface

Program Output

215



outputs of F2 layer neurons:

0   1   0   0   0   0   0

activations of F1 layer neurons:

−0.189655   −0.357143   −0.189655   −0.357143   −0.060748   −0.357143

outputs of F1 layer neurons:

0   0   0   0   0   0

degree of match: 0 vigilance:  0.95

winner is 1 reset required

*************************************************************

Input vector repeated after reset, and a new iteration

*************************************************************

Input vector is:

0 0 0 0 1 0

activations of F1 layer neurons:

0   0   0   0   0.071429   0

outputs of F1 layer neurons:

0   0   0   0   1   0

winner is 2

activations of F2 layer neurons:

0   0.666667   0.344444   0.344444   0.344444   0.344444   0.344444

outputs of F2 layer neurons:

0   0   1   0   0   0   0

      activations of F1 layer neurons:

−0.080271   −0.080271   −0.080271   −0.080271   0.013776   −0.080271

outputs of F1 layer neurons:

0   0   0   0   1   0

*************************************************************

Top−down and bottom−up outputs at F1 layer match, showing resonance.

*************************************************************

degree of match: 1 vigilance:  0.95

weights for F1 layer neurons:

0  1  0  1.964706  1.964706  1.964706  1.964706

1  0  0  1.964706  1.964706  1.964706  1.964706

0  1  0  1.964706  1.964706  1.964706  1.964706

0  0  0  1.964706  1.964706  1.964706  1.964706

0  1  1  1.964706  1.964706  1.964706  1.964706

0  0  0  1.964706  1.964706  1.964706  1.964706

winner is 2

weights for F2 layer neurons:

0  1  0  0  0  0

0.666667  0  0.666667  0  0.666667  0

0  0  0  0  1  0

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

learned vector # 3  :

0  0  0  0  1  0

*************************************************************

An old (actually the second above) input vector is retried after trying a

C++ Neural Networks and Fuzzy Logic:Preface

Program Output

216



subset vector, and a new iteration

*************************************************************

Input vector is:

1 0 1 0 1 0

activations of F1 layer neurons:

0.071429   0   0.071429   0   0.071429   0

outputs of F1 layer neurons:

1   0   1   0   1   0

winner is 1

activations of F2 layer neurons:

0   2   1   1.033333   1.033333   1.033333   1.03333

outputs of F2 layer neurons:

0   1   0   0   0   0   0

activations of F1 layer neurons:

−0.060748   −0.357143   −0.060748   −0.357143   −0.060748   −0.357143

outputs of F1 layer neurons:

0   0   0   0   0   0

degree of match: 0 vigilance:  0.95

winner is 1 reset required

*************************************************************

Input vector repeated after reset, and a new iteration

*************************************************************

Input vector is:

1 0 1 0 1 0

activations of F1 layer neurons:

0.071429   0   0.071429   0   0.071429   0

outputs of F1 layer neurons:

1   0   1   0   1   0

winner is 3

activations of F2 layer neurons:

0   2   1   1.033333   1.033333   1.033333   1.033333

outputs of F2 layer neurons:

0   0   0   1   0   0   0

activations of F1 layer neurons:

0.013776   −0.080271   0.013776   −0.080271   0.013776   −0.080271

outputs of F1 layer neurons:

1   0   1   0   1   0

*************************************************************

Top−down and Bottom−up outputs at F1layer match, showing resonance.

*************************************************************

degree of match: 1 vigilance:  0.95

weights for F1 layer neurons:

0  1  0  1  1.964706  1.964706  1.964706

1  0  0  0  1.964706  1.964706  1.964706

0  1  0  1  1.964706  1.964706  1.964706

0  0  0  0  1.964706  1.964706  1.964706

0  1  1  1  1.964706  1.964706  1.964706

0  0  0  0  1.964706  1.964706  1.964706

C++ Neural Networks and Fuzzy Logic:Preface

Program Output

217



winner is 3

weights for F2 layer neurons:

0  1  0  0  0  0

0.666667  0  0.666667  0  0.666667  0

0  0  0  0  1  0

0.666667  0  0.666667  0  0.666667  0

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

0.344444  0.344444  0.344444  0.344444  0.344444  0.344444

learned vector # 4  :

1  0  1  0  1  0

Previous Table of Contents Next

Copyright ©

 IDG Books Worldwide, Inc.

C++ Neural Networks and Fuzzy Logic:Preface

Program Output

218




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   221   222   223   224   225   226   227   228   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish