C++ Neural Networks and Fuzzy Logic: Preface


C++ Neural Networks and Fuzzy Logic



Download 1,14 Mb.
Pdf ko'rish
bet215/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   211   212   213   214   215   216   217   218   ...   443
Bog'liq
C neural networks and fuzzy logic

C++ Neural Networks and Fuzzy Logic

by Valluru B. Rao

MTBooks, IDG Books Worldwide, Inc.



ISBN: 1558515526   Pub Date: 06/01/95

Previous Table of Contents Next



Chapter 10

Adaptive Resonance Theory (ART)

Introduction

Grossberg’s Adaptive Resonance Theory, developed further by Grossberg and Carpenter, is for the

categorization of patterns using the competitive learning paradigm. It introduces a gain control and a reset to

make certain that learned categories are retained even while new categories are learned and thereby addresses

the plasticity–stability dilemma.

Adaptive Resonance Theory makes much use of a competitive learning paradigm. A criterion is developed to

facilitate the occurrence of winner−take−all phenomenon. A single node with the largest value for the set

criterion is declared the winner within its layer, and it is said to classify a pattern class. If there is a tie for the

winning neuron in a layer, then an arbitrary rule, such as the first of them in a serial order, can be taken as the

winner.


The neural network developed for this theory establishes a system that is made up of two subsystems, one

being the attentional subsystem, and this contains the unit for gain control. The other is an orienting

subsystem, and this contains the unit for reset. During the operation of the network modeled for this theory,

patterns emerge in the attentional subsystem and are called traces of STM (short−term memory). Traces of

LTM (long−term memory) are in the connection weights between the input layer and output layer.

The network uses processing with feedback between its two layers, until resonance occurs. Resonance occurs

when the output in the first layer after feedback from the second layer matches the original pattern used as

input for the first layer in that processing cycle. A match of this type does not have to be perfect. What is

required is that the degree of match, measured suitably, exceeds a predetermined level, termed vigilance

parameter. Just as a photograph matches the likeness of the subject to a greater degree when the granularity is

higher, the pattern match gets finer when the vigilance parameter is closer to 1.




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   211   212   213   214   215   216   217   218   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish