C++ Neural Networks and Fuzzy Logic: Preface


Another Example of Backpropagation Calculations



Download 1,14 Mb.
Pdf ko'rish
bet155/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   151   152   153   154   155   156   157   158   ...   443
Bog'liq
C neural networks and fuzzy logic

Another Example of Backpropagation Calculations

You have seen, in the preceding sections, the details of calculations for one particular neuron in the hidden

layer in a feedforward backpropagation network with five input neurons and four neurons in the output layer,

and two neurons in the hidden layer.

You are going to see all the calculations in the C++ implementation later in this chapter. Right now, though,

we present another example and give the complete picture of the calculations done in one completed iteration

or cycle of backpropagation.

Consider a feedforward backpropagation network with three input neurons, two neurons in the hidden layer,

and three output neurons. The weights on connections from the input neurons to the neurons in the hidden

layer are given in Matrix M−1, and those from the neurons in the hidden layer to output neurons are given in

Matrix M−2.

We calculate the output of each neuron in the hidden and output layers as follows. We add a bias or threshold

value to the activation of a neuron (call this result x) and use the sigmoid function below to get the output.

     f(x) = 1/ (1 + e

−x 

)

Learning parameters used are 0.2 for the connections between the hidden layer neurons and output neurons



and 0.15 for the connections between the input neurons and the neurons in the hidden layer. These values as

you recall are the same as in the previous illustration, to make it easy for you to follow the calculations by

C++ Neural Networks and Fuzzy Logic:Preface

Adjustments to Threshold Values or Biases

116



comparing them with similar calculations in the preceding sections.

The input pattern is ( 0.52, 0.75, 0.97 ), and the desired output pattern is ( 0.24, 0.17, 0.65). The initial weight

matrices are as follows:


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   151   152   153   154   155   156   157   158   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish