C++ Neural Networks and Fuzzy Logic: Preface


C++ Neural Networks and Fuzzy Logic



Download 1,14 Mb.
Pdf ko'rish
bet126/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   122   123   124   125   126   127   128   129   ...   443
Bog'liq
C neural networks and fuzzy logic

C++ Neural Networks and Fuzzy Logic

by Valluru B. Rao

MTBooks, IDG Books Worldwide, Inc.



ISBN: 1558515526   Pub Date: 06/01/95

Previous Table of Contents Next



Backpropagation

The Backpropagation training algorithm for training feed−forward networks was developed by Paul Werbos,

and later by Parker, and Rummelhart and McClelland. This type of network configuration is the most

common in use, due to its ease of training. It is estimated that over 80% of all neural network projects in

development use backpropagation. In backpropagation, there are two phases in its learning cycle, one to

propagate the input pattern through the network and the other to adapt the output, by changing the weights in

the network. It is the error signals that are backpropagated in the network operation to the hidden layer(s). The

portion of the error signal that a hidden−layer neuron receives in this process is an estimate of the contribution

of a particular neuron to the output error. Adjusting on this basis the weights of the connections, the squared

error, or some other metric, is reduced in each cycle and finally minimized, if possible.




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   122   123   124   125   126   127   128   129   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish