C++ Neural Networks and Fuzzy Logic: Preface


C++ Neural Networks and Fuzzy Logic



Download 1,14 Mb.
Pdf ko'rish
bet104/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   100   101   102   103   104   105   106   107   ...   443
Bog'liq
C neural networks and fuzzy logic

C++ Neural Networks and Fuzzy Logic

by Valluru B. Rao

MTBooks, IDG Books Worldwide, Inc.



ISBN: 1558515526   Pub Date: 06/01/95

Previous Table of Contents Next



A Second Look at the XOR Function: Multilayer Perceptron

By introducing a set of cascaded Perceptrons, you have a Perceptron network, with an input layer, middle or

hidden layer, and an output layer. You will see that the multilayer Perceptron can evaluate the XOR function

as well as other logic functions (AND, OR, MAJORITY, etc.). The absence of the separability that we talked

about earlier is overcome by having a second stage, so to speak, of connection weights.

You need two neurons in the input layer and one in the output layer. Let us put a hidden layer with two

neurons. Let w

11

, w



12

, w

21

, and w



22

, be the weights on connections from the input neurons to the hidden layer

neurons. Let v

1

, v



2

 , be the weights on the connections from the hidden layer neurons to the outout neuron.

We will select the w’s (weights) and the threshold values ¸

1

 , and ¸



2

 at the hidden layer neurons, so that the

input (0, 0) generates the output vector (0, 0), and the input vector (1, 1) generates (1, 1), while the inputs (1,

0) and (0, 1) generate (0, 1) as the hidden layer output. The inputs to the output layer neurons would be from

the set {(0, 0), (1, 1), (0, 1)}. These three vectors are separable, with (0, 0), and (1, 1) on one side of the

separating line, while (0, 1) is on the other side.

We will select the s (weights) and Ä, the threshold value at the output neuron, so as to make the inputs (0, 0)

and (1, 1) cause an output of 0 for the network, and an output of 1 is caused by the input (0, 1). The network

layout within the labels of weights and threshold values inside the nodes representing hidden layer and output

neurons is shown in Figure 5.1a. Table 5.2 gives the results of operation of this network.




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   100   101   102   103   104   105   106   107   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish