Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet89/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   85   86   87   88   89   90   91   92   ...   96
Bog'liq
2021272010247334 5836879612033894610

Data science strategies
Data science is mainly used in decision-making by making precise
predictions with the use of “predictive causal analytics”, “prescriptive
analytics” and machine learning.
Predictive causal analytics – The “predictive causal analytics” can be
applied to develop a model which can accurately predict and forecast the
likelihood of a particular event occurring in the future. For example,
financial institutions use predictive causal analytics-based tools to assess
the likelihood of a customer defaulting on their credit card payments, by
generating a model that can analyze the payment history of the customer
with all of their borrowing institutions.
Prescriptive analytics - The “prescriptive analytics” are widely used in the
development of “intelligent tools and applications” that are capable of
modifying and learning with dynamic parameters and make their own
“decisions”. The tool not only predicts the occurrence of a future event but
is also capable of providing recommendations on a variety of actions and its


resulting outcomes. For example, the self-driving cars gather driving-
related data with every driving experience and use it to train themselves to
make better driving and maneuvering decisions.
Machine learning to make predictions – To develop models that can
determine future trends based on the transactional data acquired by the
company, machine learning algorithms are a necessity. This is considered as
“supervised machine learning” which we will elaborate on later in this
book. For example, fraud detection systems use machine learning
algorithms on the historical data on fraudulent purchases to detect if a
transaction is fraudulent.
Machine learning for pattern discovery – To be able to develop models
that are capable of identifying hidden data patterns but lack required
parameters to make future predictions, the “unsupervised machine learning
algorithms”, such as “Clustering”, need to be employed. For example,
telecom companies often use the “clustering” technology to expand their
network by identifying network tower locations with optimal signal strength
in the targeted region.

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   85   86   87   88   89   90   91   92   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish