Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet12/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   8   9   10   11   12   13   14   15   ...   96
Bog'liq
2021272010247334 5836879612033894610

Spam Detection
A common example of a relatively simple machine learning tool is spam
detection. If we are using supervised learning, defining the variables that
are relevant, then the model will have certain characteristics to look for in
email messages received. The model might look for certain keywords or
phrases in order to detect if an email is spam or not. Words like ‘buy’ or
‘save’ might let your inbox know when you are receiving spam email. The
problem with this method is there are many cases in which those words
might not necessarily mean spam. There might be other keywords or
combinations of words that we would overlook.
This is where reinforcement learning comes in. There are so many
characteristics that may be indicative of spam email, some of them we may
not even be able to explain. Reinforcement learning will allow to model to
find these patterns on its own, without explicit guidance. Instead, we tell the
model when it has identified spam correctly. Sometimes we find an email
message in our inbox that the model didn’t classify as spam, so we move it
to our spam folder manually. Now the model knows that this message is


spam, and this piece of data is added to the model to improve the prediction
next time. So over time, the machine improves as it gets more relevant data.
This type of machine learning is known as classification. Our output falls
into discrete categories. In statistics, discrete variables are variables which
can be identified in only a finite number of categories. An example of a
discrete variable would be the number of cars sold by a car dealership in a
week. It’s discrete because the car dealership can’t sell half a car. The
variable must be a whole number.



Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish