The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics



Download 5,05 Mb.
Pdf ko'rish
bet382/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   378   379   380   381   382   383   384   385   ...   868

Part Two
Relaxing the Assumptions of the Classical Model
43
N. Gregory Mankiw, “A Quick Refresher Course in Macroeconomics,” 
Journal of Economic Literature,
vol. XXVIII, December 1990, p. 1648.
44
John Fox, 
Applied Regression Analysis, Linear Models, and Related Methods
Sage Publications, 
California, 1997, p. 306.
45
Ibid., p. 307.
46
Note that we have squared the standard errors to obtain the variances.
1. A critical assumption of the classical linear regression model is that the distur-
bances
u
i
have all the same variance
σ
2
. If this assumption is not satisfied, there is
heteroscedasticity.
2. Heteroscedasticity does not destroy the unbiasedness and consistency properties of OLS
estimators.
3. But these estimators are no longer minimum variance or efficient. That is, they are not
BLUE.
Summary and
Conclusions
guj75772_ch11.qxd 12/08/2008 07:04 PM Page 400


Chapter 11
Heteroscedasticity: What Happens If the Error Variance Is Nonconstant?
401
4. The BLUE estimators are provided by the method of weighted least squares, provided
the heteroscedastic error variances, 
σ
2
i
, are known.
5. In the presence of heteroscedasticity, the variances of OLS estimators are not provided
by the usual OLS formulas. But if we persist in using the usual OLS formulas, the 
t
and
F
tests based on them can be highly misleading, resulting in erroneous conclusions.
6. Documenting the consequences of heteroscedasticity is easier than detecting it. There
are several diagnostic tests available, but one cannot tell for sure which will work in a
given situation.
7. Even if heteroscedasticity is suspected and detected, it is not easy to correct the problem.
If the sample is large, one can obtain White’s heteroscedasticity-corrected standard er-
rors of OLS estimators and conduct statistical inference based on these standard errors.
8. Otherwise, on the basis of OLS residuals, one can make educated guesses of the likely
pattern of heteroscedasticity and transform the original data in such a way that in the
transformed data there is no heteroscedasticity.

Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   378   379   380   381   382   383   384   385   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish