particle gel conformance control technology. in SPE Production and Operations
Symposium. 2013. Society of Petroleum Engineers.
30.
Aalaie, J., et al., Preparation and probing of the steady shear flow and viscoelastic
properties of weakly crosslinked hydrogels based on sulfonated polyacrylamide for
oil recovery applications. Polymer Science Series A, 2015.
57
(5): p. 680-687.
31.
English, A.E., et al., Equilibrium swelling properties of polyampholytic hydrogels.
The Journal of chemical physics, 1996.
104
(21): p. 8713-8720.
32.
Zhou, C. and Q. Wu, A novel polyacrylamide nanocomposite hydrogel reinforced
with natural chitosan nanofibers. Colloids and Surfaces B: Biointerfaces, 2011.
84
(1): p. 155-162.
33.
Muniz, E.C. and G. Geuskens, Polyacrylamide hydrogels and semi-interpenetrating
networks (IPNs) with poly (N-isopropylacrylamide): Mechanical properties by
measure of compressive elastic modulus. Journal of Materials Science: Materials
in Medicine, 2001.
12
(10-12): p. 879-881.
34.
Stammen, J.A., et al., Mechanical properties of a novel PVA hydrogel in shear and
unconfined compression. Biomaterials, 2001.
22
(8): p. 799-806.
35.
Gong, J.P., et al., Double-network hydrogels with extremely high mechanical
strength. Advanced Materials, 2003.
15
(14): p. 1155-1158.
36.
Tang, Q., et al., Fabrication of a high-strength hydrogel with an interpenetrating
network structure. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 2009.
346
(1): p. 91-98.
37.
El-Din, H.M.N., S.G.A. Alla, and A.W. El-Naggar, Radiation synthesis and
characterization of hydrogels composed of poly (vinyl alcohol) and acrylamide
mixtures. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry,
2007.
44
(1): p. 47-54.
38.
Shukla, S. and A. Bajpai, Preparation and characterization of highly swelling smart
grafted polymer networks of poly (vinyl alcohol) and poly (acrylic acid–co–
acrylamide). Journal of applied polymer science, 2006.
102
(1): p. 84-95.
39.
Aalaie, J., et al., Gelation and swelling behavior of semi-interpenetrating polymer
network hydrogels based on polyacrylamide and poly (vinyl alcohol). Journal of
Macromolecular Science, Part B, 2008.
47
(5): p. 1017-1027.
40.
Mishra, S., et al., On the mechanical strength of biocompatible semi-IPNs of
polyvinyl alcohol and polyacrylamide. Microsystem Technologies, 2008.
14
(2): p.
193-198.
192
41.
Tang, Q., et al., A simple route to interpenetrating network hydrogel with high
mechanical strength. Journal of colloid and interface science, 2009.
339
(1): p. 45-
52.
42.
Mishra, S., et al., Radiation induced crosslinking effect on semi-interpenetrating
polymer networks of poly (vinyl alcohol). eXPRESS Polymer Letters, 2007.
1
(7):
p. 407-415.
43.
Kim, S.Y. and Y.M. Lee, Drug release behavior of electrical responsive poly (vinyl
alcohol)/poly (acrylic acid) IPN hydrogels under an electric stimulus. Journal of
applied polymer science, 1999.
74
(7): p. 1752-1761.
44.
Liu, M., et al., pH-sensitive IPN hydrogel based on poly (aspartic acid) and poly
(vinyl alcohol) for controlled release. Polymer bulletin, 2013.
70
(10): p. 2815-2827.
45.
Kim, Y.S. and R.M. Hochstrasser, Chemical exchange 2D IR of hydrogen-bond
making and breaking. Proceedings of the National Academy of Sciences of the
United States of America, 2005.
102
(32): p. 11185-11190.
46.
Briscoe, B., P. Luckham, and S. Zhu, The effects of hydrogen bonding upon the
viscosity of aqueous poly (vinyl alcohol) solutions. Polymer, 2000.
41
(10): p. 3851-
3860.
47.
Yeom, C.-K. and K.-H. Lee, Pervaporation separation of water-acetic acid mixtures
through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde. Journal
of Membrane Science, 1996.
109
(2): p. 257-265.
48.
Mansur, H.S., et al., FTIR spectroscopy characterization of poly (vinyl alcohol)
hydrogel with different hydrolysis degree and chemically crosslinked with
glutaraldehyde. Materials Science and Engineering: C, 2008.
28
(4): p. 539-548.
49.
Bai, B., et al. Thermo-Dissoluble Polymer for In-Depth Mobility Control. in IPTC
2013: International Petroleum Technology Conference. 2013.
50.
Anicuta, S.-G., et al., Fourier transform infrared (FTIR) spectroscopy for
characterization of antimicrobial films containing chitosan. Analele Universitatii
din Oradea Fascicula: Ecotoxicologie, Zootehnie si Tehnologii de Undustrie
Alimentara, 2010: p. 1234-1240.
51.
Mishra, S., et al., Preparation, characterization and microhardness study of semi
interpenetrating polymer networks of polyvinyl alcohol and crosslinked
polyacrylamide. Journal of Materials Science: Materials in Medicine, 2006.
17
(12):
p. 1305-1313.
52.
Liu, L. and Seright, R.E., Rheology of Gels Used for Conformance Control in
Fractures. SPE Journal, 2001, p. 120-125.
193
53.
Bajpai, A. and A. Giri, Water sorption behaviour of highly swelling (carboxy
methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as
agrochemical. Carbohydrate polymers, 2003.
53
(3): p. 271-279.
54.
Singh, B., et al., Synthesis, characterization and swelling responses of pH sensitive
psyllium and polyacrylamide based hydrogels for the use in drug delivery (I).
Carbohydrate polymers, 2007.
67
(2): p. 190-200.
55.
Koushki, N., et al., A new injectable biphasic hydrogel based on partially
hydrolyzed polyacrylamide and nanohydroxyapatite as scaffold for osteochondral
regeneration. RSC Advances, 2015.
5
(12): p. 9089-9096.
56.
Zhang, J., H. Chen, and A. Wang, Study on superabsorbent composite. IV. Effects
of
organification
degree
of
attapulgite
on
swelling
behaviors
of
polyacrylamide/organo-attapulgite composites. European polymer journal, 2006.
42
(1): p. 101-108.
57.
Bao, Y., J. Ma, and N. Li, Synthesis and swelling behaviors of sodium
carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent
hydrogel. Carbohydrate Polymers, 2011.
84
(1): p. 76-82.
58.
Wang, W. and A. Wang, Synthesis and swelling properties of pH-sensitive semi-
IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate)
and polyvinylpyrrolidone. Carbohydrate polymers, 2010.
80
(4): p. 1028-1036.
59.
Durmaz, S. and O. Okay, Acrylamide/2-acrylamido-2-methylpropane sulfonic acid
sodium salt-based hydrogels: synthesis and characterization. Polymer, 2000.
41
(10):
p. 3693-3704.
60.
Flory, P.J. and J. Rehner Jr, Statistical mechanics of cross
‐
linked polymer networks
II. Swelling. The Journal of Chemical Physics, 1943.
11
(11): p. 521-526.
61.
Baker, J.P., H.W. Blanch, and J.M. Prausnitz, Swelling properties of acrylamide-
based ampholytic hydrogels: comparison of experiment with theory. Polymer, 1995.
36
(5): p. 1061-1069.
62.
Okay, O. and S.B. Sariisik, Swelling behavior of poly (acrylamide-co-sodium
acrylate) hydrogels in aqueous salt solutions: theory versus experiments. European
Polymer Journal, 2000.
36
(2): p. 393-399.
63.
Baker, J.P., et al., Effect of initial total monomer concentration on the swelling
behavior of cationic acrylamide-based hydrogels. Macromolecules, 1994.
27
(6): p.
1446-1454.
64.
Okay, O., S.B. Sariisik, and S.D. Zor, Swelling behavior of anionic acrylamide-
based hydrogels in aqueous salt solutions: comparison of experiment with theory.
Journal of Applied Polymer Science, 1998.
70
(3): p. 567-575.
194
65.
Lee, K. and S.A. Asher, Photonic crystal chemical sensors: pH and ionic strength.
Journal of the American Chemical Society, 2000.
122
(39): p. 9534-9537.
66.
Chambon, F. and H.H. Winter, Linear viscoelasticity at the gel point of a
crosslinking PDMS with imbalanced stoichiometry. Journal of Rheology (1978-
present), 1987.
31
(8): p. 683-697.
67.
Kjøniksen, A.-L. and B. Nyström, Effects of polymer concentration and cross-
linking density on rheology of chemically cross-linked poly (vinyl alcohol) near the
gelation threshold. Macromolecules, 1996.
29
(15): p. 5215-5222.
68.
Calvet, D., J.Y. Wong, and S. Giasson, Rheological monitoring of polyacrylamide
gelation: Importance of cross-link density and temperature. Macromolecules, 2004.
Do'stlaringiz bilan baham: |