Umumiy Xulosalar
Berilgan tadqiqot ishida tashqi kirish signalning o’zgarishi asosida berilgan
chegaralarga muvofiq ishchi organlarning ish reglamanetini belgilab berishga
qaratilgan.
Tadqiqot ishida quyudagi ishlar amalga oshirildi:
-
Yer osti suvlarini tozlashning sxemasi tuzildi. Yer osti suvlarini tozalashning
avtomatik boshqaruvining matematik modeli qurildi. Yer osti suvlarini
tozlashning avtomatik boshqaruv tizimining algoritmi tuzildi.
-
Suv tozalash tizimlarini ish holatini belgilash ishchi orqanlar va
datchiklarning o’z-aro muvofiq holda ishlashini ta’minlash bo’yicha algoritm
yaratildi.
-
Asosiy o’zgarish parametlari belgilandi va beriluvchi signaler o’rtasida
prioritet signaler berildi.
-
Texnologik jarayoning izlash holatini optimizatsiya qilish modeli ishlab
chiqildi.
-
COB va KKI qiymat ko’rsatkichlarining farqlanish va o’zm aro bog’liq lik
grafigi tuzildi asosiy deb belgilangan qiymatlar prioriteti belgilandi va
texnologik jarayoni boshqarish tizimi algoritmga kiritildi.
-
Arduino mikroprotsesori uchun texnologik jarayoni amalga oshirish tizimi
arxetekturasi yaratildi.
-
Masofadan boshqarish uchun D900 GSM moduli ishlatilishi uchun Arduino
IDE platformasida sketch muvofiqlashtirildi.
FOYDALANILGAN ADABIYOTLAR RO’YXATI
1.
Алексеев Л.С. Контроль качества воды, Инфра-М 2004. В книге освещены
способы определения эффективности работы водоочистных и
водоподготовительных сооружений, а также установок по обработке
осадка. Рассмотрены методы и технологии лабораторно-
производственного контроля за качеством природных и сточных вод.
2.
Новиков Ю.Ю., Ласточкина К.С., Болдина З.Н. Методы исследования
качества воды водоемов. - М.: Медицина, 1990.
3.
ГОСТ 17.1.3.07-82. Охрана природы. Гидросфера. Правила контроля
качества воды, водоемов и водотоков.
4.
Питьевая вода. Гигиенические требования к качеству воды
централизованных систем питьевого водоснабжения. Контроль качества:
Санитарные правила и нормы (СанПиН 2.1.4.559-96). - М.:
Информационно-издательский центр Госкомсанэпиднадзора России, 1996.
5.
Требования к качеству воды нецентрализованного водоснабжения.
Санитарная охрана источников: Санитарные правила (СанПиН 2.1.4.544-
96). - М.: Информационно-издательский центр Госкомсанэпиднадзора
России, 1996.
6.
"LoRa Modulation Basics" (PDF). Semtech. Archived from the
original (PDF) on 2019-07-18. Retrieved 2020-02-05.
7.
Chiani, M.; Elzanaty, A. (2019). "On the LoRa Modulation for IoT: Waveform
Properties and Spectral Analysis". IEEE Internet of Things Journal. 6 (5): 8463–
8470. doi:10.1109/JIOT.2019.2919151. hdl:10754/655888. ISSN 2327-4662.
8.
"Semtech Acquires Wireless Long Range IP Provider Cycleo". Design And
Reuse. Retrieved 2019-10-17.
9.
Shrivastava P., Kumar R. Soil salinity: A serious environmental issue and plant
growth promoting bacteria as one of the tools for its alleviation // Saudi Journal
of Biological Sciences. 2015. Vol. 22, № 2. P. 123–131.
10.
Carlos A. et al. Interview by author. 2013.
11.
Smith P. et al. Biogeochemical cycles and biodiversity as key drivers of
ecosystem services provided by soils // SOIL. 2015. Vol. 1, № 2. P. 665–685.
12.
Decock C. et al. Mitigating n2O emissions from soil: From patching leaks to
transformative action // SOIL. 2015. Vol. 1, № 2. P. 687–694.
13.
Keesstra S.D. et al. Soil as a filter for groundwater quality // Current
Opinion in Environmental Sustainability. 2012. Vol. 4, № 5. P. 507–516.
14.
Berendse F. et al. Loss of plant species diversity reduces soil erosion
resistance // Ecosystems. 2015. Vol. 18, № 5. P. 881–888.
15.
Rengasamy P. World salinization with emphasis on Australia // Journal of
Experimental Botany. 2006. Vol. 57, № 5. P. 1017–1023.
16.
Brevik E.C. et al. The interdisciplinary nature of SOIL // SOIL. 2015. Vol.
1, № 1. P. 117–129.
17.
Mateo-Sagasta,, Javier & Burke, Jacob. Agriculture and water quality
interactions: a global overview. 2010.
18.
AQUASTAT - FAO’s Global Information System on Water and
Agriculture [Electronic resource]. URL: http://www.fao.org/aquastat/en/
(accessed: 17.05.2020).
19.
Fan X. et al. Soil salinity development in the yellow river delta in
relation to groundwater dynamics // Land Degradation and Development. 2012.
Vol. 23, № 2. P. 175–189.
20.
Trnka M. et al. Consequences of climate change for the soil climate in
Central Europe and the central plains of the United States // Climatic Change.
2013. Vol. 120, № 1–2. P. 405–418.
21.
Dubois G. et al. Introduction to this special issue on geoinformatics
for environmental surveillance // Computers and Geosciences. 2011. Vol. 37, №
3. P. 277–279.
22.
Geeson N.A., Brandt C.J., Thornes J.B. Mediterranean
Desertification: A Mosaic of Processes and Responses. John Wiley & Sons,
2003. 459 p.
23.
Van-camp L. et al. Technical Working Groups Established Under the
Thematic Strategy for Soil Protection.
24.
Sparks D.L. Environmental Soil Chemistry. Elsevier, 2003. 368 p.
25.
Minhas P.S. et al. Coping with salinity in irrigated agriculture: Crop
evapotranspiration and water management issues // Agricultural Water
Management. 2020. Vol. 227. P. 105832.
26.
Hoffman G.J., Shalhevet J. Controlling Salinity. In Design and
Operation of Farm Irrigation Systems, 2nd Edition (pp. 160-207). // American
Society of Agricultural and Biological Engineers. 2007.
27.
Pereira L.S., Cordery I., Iacovides I. Coping with Water Scarcity:
Addressing the Challenges. Springer Science & Business Media, 2009. 385 p.
28.
K.k T., N.c K. Agricultural drainage water management in arid and
semi-arid areas // FAO Irrigation and Drainage Paper. FAO, 2002.
29.
Qadir M. et al. The challenges of wastewater irrigation in developing
countries // Agricultural Water Management. 2010. Vol. 97, № 4. P. 561–568.
30.
Qadir M. et al. Economics of salt-induced land degradation and
restoration // Natural Resources Forum. 2014. Vol. 38, № 4. P. 282–295.
31.
Abdurakhmanov M.A., Rakhimov Y.T. The state of land resources in
the Republic of Uzbekistan. The territory of science. 2017. No. 4, pp 37-40.
32.
Guy Sela, Irrigation with desalinization water, 2019, cropaia.com.
33.
Gazieva R., Ozodov E. Automatic diffusion mixing system for
watering in regions with high water sales. 2019.
34.
Senpinar A. Internet-/Arduino-controlled PV automatic irrigation system for
clean environment // International Journal of Environmental Science and
Technology. 2019. Vol. 16, № 9. P. 5185–5196.
35.
Bharti A. et al. Phase Equilibria in Ionic Liquid Facilitated Liquid-
Liquid Extractions. CRC Press, 2017. 247 p.
36.
Liu A., Qu Z., Nachshon U. On the potential impact of root system
size and density on salt distribution in the root zone // Agricultural Water
Management. 2020. Vol. 234.
37.
Bezborodov G.A. et al. Mulching and water quality effects on soil
salinity and sodicity dynamics and cotton productivity in Central Asia //
Agriculture, Ecosystems and Environment. 2010. Vol. 138, № 1–2. P. 95–102.
38.
Vlotman W.F. PRESENT STATUS AND FUTURE PROSPECTS OF
DRAINAGE IN RELATION TO THE ICID VISION 2030 // Irrig. Drain. 2020.
Vol. 69, № 2. P. 218–229.
39.
Ayers, R.S. & Westcot, D.W. & FAO, Rome & AGL,. (1985). Water
quality for agriculture. XF2006139845.
40.
Minhas P.S. et al. Coping with salinity in irrigated agriculture: Crop
evapotranspiration and water management issues // Agric. Water Manag. 2020.
Vol. 227.
41.
Guy Sela, Irrigation with desalinization water, 2019, cropaia.com.
42.
Phogat V. et al. Impact of long-term recycled water irrigation on crop
yield and soil chemical properties // Agric. Water Manag. 2020. Vol. 237.
43.
Charyev R.R., Ismailova A.I., Mirzaev G.R. Pollution of surface water
of the Tashkent region of the Uzbekistan Republic // BULLETIN OF
ORENBURG STATE UNIVERSITY. 2017. Vol. 6, № 12. P. 78–80.
44.
Abdurakhmanov M.A., Rakhimov Y.T. The state of land resources in
the Republic of Uzbekistan. The territory of science. 2017. No. 4, pp 37-40.
45.
Phogat V. et al. Management of soil salinity associated with irrigation
of protected crops // Agric. Water Manag. 2020. Vol. 227.
46.
Gazieva R., Ozodov E. Automatic diffusion mixing system for
watering in regions with high water sales. 2019.
47.
Bharti A. et al. Phase Equilibria in Ionic Liquid Facilitated Liquid-Liquid
Extractions. CRC Press, 2017. 247 p.
48.
Senpinar A. Internet-/Arduino-controlled PV automatic irrigation system for
clean environment // Int. J. Environ. Sci. Technol. 2019. Vol. 16, № 9. P. 5185–
5196.
49.
Yasin H.M., Zeebaree S.R.M., Zebari I.M.I. Arduino Based Automatic
Irrigation System: Monitoring and SMS Controlling. 2019. P. 109–114.
50.
Liu A., Qu Z., Nachshon U. On the potential impact of root system size and
density on salt distribution in the root zone // Agric. Water Manag. 2020. Vol.
234.
51.
Rashid M. et al. Use of saline water for crop production // Towards the
rational use of high salinity tolerant plants: Vol. 2 Agriculture and forestry under
marginal soil water conditions / ed. Lieth H., Al Masoom A.A. Dordrecht:
Springer Netherlands, 1993. P. 157–169.
52.
Feuer A., Barmish B.R., Morse A.S. An unstable dynamical systems
associated with model reference adaptive control.// IEEE Trans. Aut. Contr.,
1978. V.23. 4 p.499 500.
53.
Pares P.O. Luapunov's redisign of model reference adaptive control
systems.// IEEE Transs. Aut.Contr.,1966. V.AC-11. N3. p.362 367.
54.
Narendra K. S., Annaswamy A.M., Singh R.P. A geeneral approuch to thee
stability of odapyive systems. // Int.J.Control,1985. v.41. p.193 215.
55.
Narendra K.S., Lin Y.H. Stable model reference adaptive control system for
a plant with input amplitude constraints.// Int. J. Contr.,1983. V.36. p.747- 753.
56.
Narendra K.S., Lin Y.H. Design of stable model reference adaptive
controllers. // Application od Adaptive Control. London: Academic Press, 1980.
p.lOO 130.
57.
Narendra K. S., Lin Y.H., Valavani L.S. Stable adaptive controller design.
Do'stlaringiz bilan baham: |