Traveling Wave Solutions for Space-Time Fractional Nonlinear Evolution Equations


 Space-time fractional foam drainage equation



Download 439,48 Kb.
Pdf ko'rish
bet4/7
Sana29.05.2022
Hajmi439,48 Kb.
#615305
1   2   3   4   5   6   7
3.3 Space-time fractional foam drainage equation 
Let us consider the following space-time fractional foam drainage equation
,
0
,
1
,
0
,
2
2
1
2
2
2
2




















t
x
V
x
V
V
t
V
V
t
V










(41) 
It has been studied by many authors [15, 34]. This equation have appeared as a simple model for 
describing the flow of liquid through channels ( Plateau borders [35] ) and nodes ( intersection 
of four channels) between the bubbles, driven by gravity and capillarity [36].
Introducing the fractional complex transformation


,
)
1
(
)
1
(
),
(
)
,
(













ct
kx
V
t
x
V
(42) 
where
 k
and 
c
are constants in eq. (41), Eq. (41) can be transformed as 
,
0
2
2
1
2
2
2
2









V
k
V
kV
V
V
k
V
c
(43) 
According to the balancing principle, the solution of (43) can be written as
)
(
1
0
)
(






e
A
A
V
(44) 
where 
1
0
,
A
A
are constants to be determined later and
)
(


satisfies the nonlinear ODE (7). 
By substituting eq. (44) into eq. (43) and using (7) commonly, the left-hand side of eq. (43) 
becomes a polynomial in
)
(



e
. Collecting the coefficients of this polynomial to zero yields a 
system of algebraic equations in terms of 
c
r
q
p
k
A
A
,
,
,
,
,
,
1
0
. The algebraic equations are 
overlooked for convenience. Solving the resulting algebraic equations with aid of symbolic 
computation, such as Maple, one get 












2
3
3
1
0
4
1
,
,
,
2
r
k
pq
k
c
k
k
kp
A
r
k
A
(45) 
where 
k, 
q
p
,
and 
r
are arbitrary constants. 
By combining the equations (9), (42), (44) and (45), the space-time fractional foam drainage 
equation (41) has the following traveling wave solutions: 
For Type 1: 
,
0
4
,
0
,
))
(
4
5
.
0
tanh(
4
2
2
)
,
(
2
0
2
2
1

















q
r
q
r
q
r
q
r
q
k
r
k
t
x
V


(46) 
,
0
4
,
0
,
))
(
4
5
.
0
tan(
4
2
2
)
,
(
2
0
2
2
2

















q
r
q
r
r
q
r
q
q
k
r
k
t
x
V


(47) 
,
0
4
,
0
,
1
))
(
exp(
2
)
,
(
2
0
3













q
r
q
r
r
k
r
k
t
x
V


(48) 
,
0
4
,
0
,
0
,
4
))
(
2
)
(
2
)
,
(
2
0
0
2
4















q
r
r
q
r
r
k
r
k
t
x
V




(49) 


where, 





t
r
k
q
k
kx
)
1
(
4
4
)
1
(
2
3
3








.
For Type 2: 
,
0
,
0
,
)
1
(
)
1
(
tan
)
,
(
0
3
5

























q
p
t
pq
k
kx
pq
pq
k
t
x
V





(50) 
,
0
,
0
,
)
1
(
)
1
(
cot
)
,
(
0
3
6
























q
p
t
pq
k
kx
pq
pq
k
t
x
V





(51) 
0
,
0
,
)
1
(
)
1
(
tanh
)
,
(
0
3
7



























q
p
t
pq
k
kx
pq
pq
k
t
x
V





,
(52) 
,
0
,
0
,
)
1
(
)
1
(
coth
)
,
(
0
3
8



























q
p
t
pq
k
kx
pq
pq
k
t
x
V





(53) 
For Type 3: 
,
0
,
0
,
)
1
(
4
4
)
1
(
)
,
(
1
0
2
3
3
9


















r
q
t
r
k
q
k
kx
k
t
x
V





(54) 
3.4 Time fractional fifth order Sawada-Kotera (SK) equation 
Finally, to illustrate more applicability of this proposed method, the following time fractional SK 
equation is considered:
.
1
0
,
0
5
5
5
5
5
3
3
2
2
2






















x
U
x
U
U
x
U
x
U
x
U
U
t
U
(55) 
The time fractional equation (55) appeared as a model equation in many physical instances that 
propagates in opposite directions. To obtain the analytical solutions of Eq. (55), one can 
introduce the following fractional complex transformation: 
],
)
1
(
[
),
(
)
,
(









t
c
x
k
w
t
x
U
(56) 
where
k
and 
c
are constants to be evaluated later. According to the transformation (55), one can 
be obtained to the following nonlinear ODE: 


.
0
)
(
5
)
(
3
5
5
5
5
2
2
3
3










d
w
d
k
d
w
d
w
d
d
k
w
d
d
k
d
dw
kc
(57) 
Integrating the Eq. (57) once and setting the constant of integration to zero for simplicity, one get 
.
0
5
3
5
4
4
4
2
2
2
3







d
w
d
k
d
w
d
w
k
w
cw
(58) 
According to the balancing principle between 
4
4

d
w
d
and
3
w
that are involved in eq. (58), one 
obtain 
.
2

N
Therefore the solution of (58) according to the proposed method can be written as
)
(
2
2
)
(
1
0
)
(










e
A
e
A
A
w
(59) 
where 
1
0
,
A
A
and 
2
A
are constants to be determined later. Substituting Eq. (59) into Eq. (58) and 
collecting the degree of the polynomial in
)
(



e
yields a system of algebraic nonlinear equations 
which are omitted for simplicity. Solving the resulting algebraic equations, one obtains 
Set 1:
2
2
2
2
1
2
0
2
2
4
2
4
6
,
6
,
6
),
16
8
(
p
k
A
pr
k
A
pq
k
A
q
p
r
pqr
k
c










(60) 
Set2:
,
6
,
6
,
,
52
2
11
)
10
2
5
(
2
2
2
2
1
2
0
2
2
4
4
4
2
4
4
2
4
p
k
A
pr
k
A
k
A
q
p
k
r
k
qp
r
k
pq
k
r
k
c













(61) 
where 
20
840
1680
105
)
15
60
(
2
2
2
4
2
pqr
q
p
r
r
pq







,
q
p
,
and 
r
are arbitrary constants. 
Therefore, the time fractional SK equation according to the 
Set 1
has the following traveling 
wave solutions:
For Type 1: 
,
0
,
0
4
,
))
(
4
5
.
0
tanh(
4
6
))
(
4
5
.
0
tanh(
4
6
6
)
,
(
2
2
0
2
2
2
0
2
2
2
2
1
1































q
q
r
r
q
r
q
r
q
k
r
q
r
q
r
q
r
k
q
k
t
x
U




(62) 


,
0
,
0
4
,
))
(
)
4
(
5
.
0
tan(
)
4
(
2
6
))
(
)
4
(
5
.
0
tan(
)
4
(
6
6
)
,
(
2
2
0
2
2
2
0
2
2
2
2
1
2








































q
r
r
q
r
q
r
q
k
r
q
r
q
r
q
r
k
q
k
t
x
U
(63) 
0
)
4
(
,
0
,
0
,
1
6
1
6
)
,
(
2
2
))
(
(
2
))
(
(
2
2
1
0
0
3























q
r
r
q
e
r
k
e
r
k
t
x
U
r
r




(64) 
,
0
4
,
0
,
0
,
4
))
(
2
)
(
6
4
))
(
2
)
(
6
6
)
,
(
2
2
0
0
2
2
0
0
3
2
2
1
4


























q
r
r
q
r
r
k
r
r
k
q
k
t
x
U








(65) 
where, 
.
)
1
(
)
16
8
(
2
4
2
4
















t
q
r
qr
k
x
k
For Type 2: 
,
0
,
0
)),
(
(
tan
6
6
)
,
(
0
2
2
2
1
5






q
p
pq
pq
k
pq
k
t
x
U


(66) 
,
0
,
0
)),
(
(
cot
6
6
)
,
(
0
2
2
2
1
6






q
p
pq
pq
k
pq
k
t
x
U


(67) 
,
0
,
0
)),
(
(
tanh
6
6
)
,
(
0
2
2
2
1
7







q
p
pq
pq
k
pq
k
t
x
U


(68) 
,
0
,
0
)),
(
(
coth
6
6
)
,
(
0
2
2
2
1
8







q
p
pq
pq
k
pq
k
t
x
U


(69) 
where, 
.
)
1
(
)
16
(
2
2
4













t
q
p
k
x
k
The other obtained solutions of Eq. (55) according to 

Download 439,48 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish