Traveling Wave Solutions for Space-Time Fractional Nonlinear Evolution Equations


 Space-time fractional coupled Burgers equation



Download 439,48 Kb.
Pdf ko'rish
bet3/7
Sana29.05.2022
Hajmi439,48 Kb.
#615305
1   2   3   4   5   6   7
3.2 Space-time fractional coupled Burgers equation 
Let us consider the space-time fractional coupled Burgers equation as follows 
.
0
)
(
2
0
)
(
2
2
2
2
2














































x
uv
M
x
v
v
x
v
t
v
x
uv
L
x
u
u
x
u
t
u
(26) 


The coupled fractional equations have appeared as model equation in mathematical physics
which is derived by Esipov [32]. It is very significant that the system is a simple model of 
sedimentation or evolution of scaled volume concentrations of two kinds of particles in fluid 
suspensions or colloids, under the effect of gravity [33]. The constants 
L
and 
M
depend on the 
system parameters such as the Peclet number, the Stokes velocity of particles due to gravity, and 
the Brownian diffusivity.
One can introduce the following transformation
)
1
(
)
1
(
),
(
)
,
(
),
(
)
,
(















ct
x
v
t
x
v
u
t
x
u
(27) 
where 
c
is a constant, Eq. (26) can be converted to the following form 



















0
)
(
2
0
)
(
2
uv
M
v
v
v
v
c
uv
L
u
u
u
u
c
(28) 
where primes denote the differentiation with respect to 

.
According to the balancing principle, the solution of the system of eq. (28) can be expressed by a 
polynomial in 
)
(



e
as follows: 
,
)
(
)
(
)
(
1
0
)
(
1
0
















e
B
B
v
e
A
A
u
(29) 
where 
1
0
1
0
,
,
,
B
B
A
A
are constants to be determined later and 
)
(


satisfies the equation (7). 
By substituting eq. (29) into eq. (28) and using (7) frequently, one can obtain the following 
system of algebraic equations by setting the coefficients of the polynomial in
)
(



e
to zero:
.
0
2
2
2
,
0
3
2
2
2
0
2
2
2
2
,
0
2
,
0
2
2
2
,
0
3
2
2
2
0
2
2
2
2
,
0
2
1
1
2
1
2
1
1
0
0
1
1
1
2
1
0
1
1
1
1
1
0
1
0
1
1
0
1
2
1
1
2
1
1
0
1
0
1
0
1
1
1
1
2
1
2
1
1
0
0
1
1
1
2
1
0
1
1
1
1
1
1
0
0
1
1
0
1
2
1
1
2
1
1
0
1
0
1
0
1
1

































































p
A
MB
p
B
p
B
A
MpB
A
MpB
pr
B
p
cB
r
B
p
B
B
r
A
MB
q
B
MA
r
B
MA
r
A
MB
r
cB
r
B
B
r
B
pq
B
q
B
q
cB
q
B
MA
q
A
MB
q
B
B
qr
B
p
A
LB
p
A
p
A
A
LpB
A
LpB
pr
A
p
cA
r
A
p
A
A
r
A
LB
q
B
LA
r
B
LA
r
B
LA
r
cA
r
A
A
r
A
pq
A
q
A
q
cA
q
B
LA
q
A
LB
q
A
A
qr
A
(30) 
Solving the resulting algebraic equations (30) with aid of symbolic computation, such as Maple, 
one obtains 































LM
M
p
B
B
B
LM
L
p
A
M
B
L
A
M
B
Mr
r
LMB
c
1
)
1
(
,
,
1
)
1
(
,
)
1
(
)
1
(
,
1
2
2
1
0
0
1
0
0
0
0
(31) 


where 
0
B
,
q
p
,
and 
r
are arbitrary constants. 
By combing the equations (9), (27), (29) and (31), the space-time fractional coupled Burger’s 
equation (26) has the following traveling wave solutions: 
For Type 1: 
,
0
4
,
0
,
))
(
4
5
.
0
tanh(
4
2
1
)
1
(
)
,
(
))
(
4
5
.
0
tanh(
4
2
1
)
1
(
)
1
(
)
1
(
)
,
(
2
0
2
2
0
1
0
2
2
0
1




















































q
r
q
r
q
r
q
r
LM
M
B
t
x
v
r
q
r
q
r
q
LM
L
M
B
L
t
x
u





(32) 
,
0
4
,
0
,
))
(
4
5
.
0
tan(
4
2
1
)
1
(
)
,
(
))
(
4
5
.
0
tan(
4
2
1
)
1
(
)
1
(
)
1
(
)
,
(
2
0
2
2
0
2
0
2
2
0
2



















































q
r
q
r
r
q
r
q
q
LM
M
B
t
x
v
r
r
q
r
q
q
LM
L
M
B
L
t
x
u




(33) 
,
0
4
,
0
,
1
))
(
exp(
1
)
1
(
)
,
(
1
))
(
exp(
1
)
1
(
)
1
(
)
1
(
)
,
(
2
0
0
3
0
0
3










































q
r
q
r
r
LM
M
B
t
x
v
r
r
LM
L
M
B
L
t
x
u




(34) 
,
0
4
,
0
,
0
,
4
))
(
2
)
(
1
)
1
(
)
,
(
4
))
(
2
)
(
1
)
1
(
)
1
(
)
1
(
)
,
(
2
0
0
2
0
4
0
0
2
0
4













































q
r
r
q
r
r
LM
M
B
t
x
v
r
r
LM
L
M
B
L
t
x
u








(35) 
where, 
)
1
(
)
1
(











ct
x
and 
.
1
2
2
0
0
M
B
Mr
r
LMB
c







For Type 2: 
0
,
0
,
)
)
1
(
)
1
(
(
tan
1
)
1
(
)
,
(
)
)
1
(
)
1
(
(
tan
1
)
1
(
)
1
(
)
1
(
)
,
(
0
0
5
0
0
5

















































q
p
ct
x
pq
pq
LM
M
B
t
x
v
ct
x
pq
pq
LM
L
M
B
L
t
x
u










(36) 


,
0
,
0
,
)
1
(
)
1
(
cot
1
)
1
(
)
,
(
)
1
(
)
1
(
cot
1
)
1
(
)
1
(
)
1
(
)
,
(
0
0
6
0
0
6

































































q
p
ct
x
pq
pq
LM
M
B
t
x
v
ct
x
pq
pq
LM
L
M
B
L
t
x
u










(37) 
,
0
,
0
,
)
)
1
(
)
1
(
(
tanh
1
)
1
(
)
,
(
)
)
1
(
)
1
(
(
tanh
1
)
1
(
)
1
(
)
1
(
)
,
(
0
0
7
0
0
7





















































q
p
ct
x
pq
pq
LM
M
B
t
x
v
ct
x
pq
LM
L
M
B
L
t
x
u











(38) 
,
0
,
0
,
)
1
(
)
1
(
coth
1
)
1
(
)
,
(
)
1
(
)
1
(
coth
1
)
1
(
)
1
(
)
1
(
)
,
(
0
0
8
0
0
8





































































q
p
ct
x
pq
pq
LM
M
B
t
x
v
ct
x
pq
pq
LM
L
M
B
L
t
x
u










(39)
where 
.
1
2
2
0
0
M
B
LMB
c





For Type 3: 
,
0
,
0
,
)
1
(
)
1
(
1
)
1
(
)
,
(
)
1
(
)
1
(
1
)
1
(
)
1
(
)
1
(
)
,
(
1
0
0
9
1
0
0
9
































































ct
x
LM
M
B
t
x
v
ct
x
LM
L
M
B
L
t
x
u
(40) 
where, 
.
1
2
2
0
0
M
B
LMB
c






Download 439,48 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish