Electric Motors and Drives This Page Intentionally Left Blank



Download 5,24 Mb.
Pdf ko'rish
bet64/97
Sana13.04.2022
Hajmi5,24 Mb.
#548362
1   ...   60   61   62   63   64   65   66   67   ...   97
Bog'liq
Electric Motors Drives

j
40
Ω
250
Ω
j
1
Ω
j
1
Ω
0.3 (1 

0.04)
0.04
= 7.2 
Ω
408.5V
60 Hz
Stator
Air-gap
Rotor
j
40
Ω
250
Ω
0.2
Ω
0.2
Ω
0.3
Ω
0.3 
Ω
j
0.1
Ω
j
0.1
Ω
0.3 (1 

0.4)
0.4
= 0.45
Ω
40.85 V
6 Hz
389V
38.9 V
N
s = 1800 rev/min
N
= 1728 rev/min
Slip speed = 72 rev/min
Slip = 0.04
Torque = 116 Nm/phase
N
s = 180 rev/min
N
= 108 rev/min
Slip speed = 72 rev/min
Slip = 0.4
Torque = 116 Nm/phase
440 V
49 V
Figure 7.19
Comparison of equivalent circuit parameters at 60 Hz and 6 Hz
Induction Motor Equivalent Circuit
275


the circuit behaviour. (It should be pointed out that the calculations
required to derive the voltages at 6 Hz are not trivial, as the reader may
like to verify.)
We will see when we study variable-frequency speed control in Chap-
ter 8 that to get the best out of the motor we will need the
X
ux to be
constant and the slip speed (in rev/min) to be the same when the motor is
required to develop full-load torque.
To keep the air-gap
X
ux constant we need to ensure that the magnet-
ising current remains the same when we reduce the frequency. We know
that at 6 Hz the magnetising reactance is one-tenth of its value at 60 Hz,
so the voltage
V
m
must be reduced by a factor of 10, from 408.5 to
40.85 V, as shown in Figure 7.19. (We previously established that the
condition for constant
X
ux in an ideal transformer was that the
V/f
ratio
must remain constant: here we see that the so-called ‘air-gap voltage’
(
V
m
) is the one that matters.)
In Section 7.7 we considered operation at 60 Hz, for which the syn-
chronous speed was 1800 rev/min and the rated speed 1728 rev/min.
This gave a slip speed of 72 rev/min and a slip of 0.04. At 6 Hz the
synchronous speed is 180 rev/min, so for the same slip speed of 72 rev/
min the new slip is 0.4. This explains why the ‘load’ resistance of 7
:
2
V
at
60 Hz becomes only 0
:
45
V
at 6 Hz, while the total referred rotor
resistance reduces from 7
:
5
V
at 60 Hz to 0
:
75
V
at 6 Hz.
The 60 Hz voltages shown in the upper half of Figure 7.19 were
calculated in Section 7.7. To obtain the same torque at 6 Hz as at
60 Hz, we can see from equation (7.20) that the rotor power must reduce
in proportion to the frequency, i.e. by a factor of 10. The rotor resistance
has reduced by a factor of 10 so we would expect the rotor voltage to
also reduce by a factor of 10. This is con
W
rmed in Figure 7.19, where the
rotor voltage at 6 Hz is 38.9 V. (This means the rotor current (51.9 A) at
6 Hz is the same as it was at 60 Hz, which is what we would expect given
that for the same torque we would expect the same active current.)
Working backwards (from
V
m
) we can derive the input voltage required,
i.e. 49 V.
Had we used the approximate circuit, in which the magnetising
branch is moved to the left-hand side, we would have assumed that to
keep the amplitude of the
X
ux wave constant, we would have to change
the voltage in proportion to the frequency, in which case we would have
decided that the input voltage at 6 Hz should be 44 V, not the 49 V
really needed. And if we had supplied 44 V rather than 49 V, the torque
at the target speed would be almost 20% below our expectation, which
is clearly signi
W
cant and underlines the danger of making unjusti
W
ed
assumptions when operating at low frequencies.
276
Electric Motors and Drives


In this example the volt-drop of 10 V across the stator resistance
is much more signi
W
cant at 6 Hz than at 60 Hz, for two reasons.
Firstly, at 6 Hz the useful (load) voltage is 38.9 V whereas at 60 Hz
the load voltage is 389 V: so a
W
xed drop of 10 V that might be con-
sidered negligible as compared with 389 V is certainly not negligible in
comparison with 38.9 V. And secondly, when the load is predominantly
resistive, as here, the reduction in the magnitude of the supply voltage
due to a given series impedance is much greater if the impedance is
resistive than if it is reactive. This matter was discussed in Section 1 of
Chapter 6.
REVIEW QUESTIONS
1)
The primary winding of an ideal transformer is rated at 240 V, 2 A.
The secondary has half as many turns as the primary. Calculate the
secondary-rated voltage and current.
2)
An ideal transformer has 200 turns on its primary winding and
50 turns on its secondary. If a resistance of 5
V
is connected to the
secondary, what would be the apparent impedance as seen from
the primary?
3)
A 240 V/20 V, 50 Hz ideal mains transformer supplies a secondary
load consisting of a resistance of 30
V
. Calculate the primary cur-
rent and power.
4)
If a small air-gap was made in the iron core of a transformer,
thereby increasing the reluctance of the magnetic circuit, what
e
V
ect would it have on the following:
.
The no-load current, with the primary supplied at rated voltage.
.
The magnetising reactance.
.
The secondary voltage.
5)
The approximate equivalent circuit parameters of a transformer
feeding a resistive load are
R
T
¼
0
:
1
V
;
X
T
¼
0
:
5
V
;
X
m
¼
30
V
,
and the referred full-load resistance is 10
V
. Estimate the percentage
fall in the secondary voltage between no-load and full-load, and the
short-circuit current as a multiple of the full-load current.
6)
A particular 2-pole, 60 Hz induction motor has equal stator and
referred rotor resistances, and under locked rotor conditions the
total power input is 12 kW. Estimate the starting torque.
Induction Motor Equivalent Circuit
277


7)
A single-cage 5 kW, 6-pole, 950 rev/min, 50 Hz induction motor
takes
W
ve times full-load current in a direct-on-line start. Estimate
the starting torque.
8)
What e
V
ect would a 10% increase in leakage reactance in a single-
cage induction motor have on (a) the pull-out torque, (b) the pull-
out slip; (c) the full-load slip, (c) the starting current.
9)
An induction motor develops rated torque with a slip of 3.5%
when the rotor is cold. If the rotor resistance is 20% higher when
the motor is at normal running temperature, at what slip will it
develop rated torque? Explain your answer using the equivalent
circuit.
10)
Assume that the approximate equivalent circuit is to be used in this
question. An induction motor has a magnetising current of 8 A. At
full-load, the referred load current is 40 A, lagging the supply
voltage by 15
8
. Estimate the supply current and power-factor at
full-load and when the slip is half of the full-load value. State any
assumptions.
11)
The full-load slip of a 2-pole induction motor at 50 Hz is 0.04.
Estimate the speed at which the motor will develop rated torque if
the frequency is reduced to (a) 25 Hz, (b) 3 Hz. Assume that in
both cases the voltage is adjusted to maintain full air-gap
X
ux.
Calculate the corresponding slip in both cases, and explain why the
very low-speed condition is ine
Y
cient. Explain using the equivalent
circuit why the full-load currents would be the same in all the three
cases.
278
Electric Motors and Drives


8
INVERTER-FED INDUCTION
MOTOR DRIVES
INTRODUCTION
We saw in Chapter 6 that the induction motor can only run e
Y
ciently at
ow slips, i.e. close to the synchronous speed of the rotating
W
eld. The best
method of speed control must therefore provide for continuous smooth
variation of the synchronous speed, which in turn calls for variation of the
supply frequency. This is achieved using an inverter (as discussed in
Chapter 2) to supply the motor. A complete speed control scheme
which includes tacho (speed) feedback is shown in block diagram form
n Figure 8.1.
We should recall that the function of the converter (i.e. recti
W
er and
variable-frequency inverter) is to draw power from the
W
xed-frequency
constant-voltage mains, and convert it to variable frequency, variable
voltage for driving the induction motor. Both the recti
W
er and the
inverter employ switching strategies (see Chapter 2), so the power
conversions are accomplished e
Y
ciently and the converter can be
compact.
Variable frequency inverter-fed induction motor drives are used in
ratings up to hundreds of kilowatts. Standard 50 Hz or 60 Hz motors
are often used (though as we will see later this limits performance), and
the inverter output frequency typically covers the range from around
5–10 Hz up to perhaps 120 Hz. This is su
Y
cient to give at least a 10:1
speed range with a top speed of twice the normal (mains frequency)
operating speed. The majority of inverters are 3-phase input and 3-phase
output, but single-phase input versions are available up to about 5 kW,
and some very small inverters (usually less than 1 kW) are speci
W
cally
intended for use with single-phase motors.


A fundamental aspect of any converter, which is often overlooked,
is the instantaneous energy balance. In principle, for any balanced
three-phase load, the total load power remains constant from instant
to instant, so if it was possible to build an ideal 3-phase input, 3-phase
output converter, there would be no need for the converter to include
any energy storage elements. In practice, all converters require some
energy storage (in capacitors or inductors), but these are relatively small
when the input is 3-phase because the energy balance is good. However,
as mentioned above, many small and medium power converters are
supplied from single-phase mains. In this case, the instantaneous input
power is zero at least twice per cycle of the mains (because the voltage
and current go through zero every half-cycle). If the motor is 3-phase
(and thus draws power at a constant rate), it is obviously necessary to
store su
Y
cient energy in the converter to supply the motor during the
brief intervals when the load power is greater than the input power. This
explains why the most bulky components in many small and medium
power inverters are electrolytic capacitors.
The majority of inverters used in motor drives are voltage source
inverters (VSI), in which the output voltage to the motor is controlled to
suit the operating conditions of the motor. Current source inverters (CSI)
are still used, particularly for large applications, but will not be discussed
here.
Comparison with d.c. drive
The initial success of the inverter-fed induction motor drive was due to
the fact that a standard induction motor was much cheaper than a
50/60 Hz supply

Download 5,24 Mb.

Do'stlaringiz bilan baham:
1   ...   60   61   62   63   64   65   66   67   ...   97




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish