Hands-On Machine Learning with Scikit-Learn and TensorFlow



Download 26,57 Mb.
Pdf ko'rish
bet200/225
Sana16.03.2022
Hajmi26,57 Mb.
#497859
1   ...   196   197   198   199   200   201   202   203   ...   225
Bog'liq
Hands on Machine Learning with Scikit Learn Keras and TensorFlow

Limits of K-Means
Despite its many merits, most notably being fast and scalable, K-Means is not perfect.
As we saw, it is necessary to run the algorithm several times to avoid sub-optimal sol‐
utions, plus you need to specify the number of clusters, which can be quite a hassle.
Moreover, K-Means does not behave very well when the clusters have varying sizes,
different densities, or non-spherical shapes. For example, 
Figure 9-11
 shows how K-
Means clusters a dataset containing three ellipsoidal clusters of different dimensions,
densities and orientations:
Figure 9-11. K-Means fails to cluster these ellipsoidal blobs properly
As you can see, neither of these solutions are any good. The solution on the left is
better, but it still chops off 25% of the middle cluster and assigns it to the cluster on
the right. The solution on the right is just terrible, even though its inertia is lower. So
depending on the data, different clustering algorithms may perform better. For exam‐
ple, on these types of elliptical clusters, Gaussian mixture models work great.
It is important to scale the input features before you run K-Means,
or else the clusters may be very stretched, and K-Means will per‐
form poorly. Scaling the features does not guarantee that all the
clusters will be nice and spherical, but it generally improves things.
Now let’s look at a few ways we can benefit from clustering. We will use K-Means, but
feel free to experiment with other clustering algorithms.
252 | Chapter 9: Unsupervised Learning Techniques


Using clustering for image segmentation
Image segmentation
is the task of partitioning an image into multiple segments. In
semantic segmentation
, all pixels that are part of the same object type get assigned to
the same segment. For example, in a self-driving car’s vision system, all pixels that are
Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   196   197   198   199   200   201   202   203   ...   225




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish