Solving Trigonometric Equations She Loves Math


Solving Trig Problems:  General Solutions



Download 105,74 Kb.
Pdf ko'rish
bet6/20
Sana26.04.2020
Hajmi105,74 Kb.
#47348
1   2   3   4   5   6   7   8   9   ...   20
Bog'liq
shelovesmath com

Solving Trig Problems:  General Solutions

 

\(\displaystyle 6\cos \theta =3\sqrt{3}\)



 

\(\displaystyle \begin{array}{c}\cos \theta

=\frac{{\sqrt{3}}}{2}\\\\\left\{ {\theta |\theta

=\frac{\pi }{6}+2\pi k,\,\,\theta =\frac{{11\pi }}

{6}+2\pi k} \right\}\end{array}\)

\(\displaystyle \begin{array}{c}\color{#800000}{{\sin

x+3=4\sin x}}\\\\3\sin x=3\\\sin x=1\\\,\\\left\{ {x|x=\frac{\pi }

{2}+\,\,2\pi k} \right\}\end{array}\)

\(\displaystyle \begin{array}{c}\color{#800000}

{{\sqrt{3}\csc x=-2}}\\\text{csc}\,x=-\frac{2}

{{\sqrt{3}}}\,\,\,\,\,\,\,\,\,\left( {\sin x=-\frac{{\sqrt{3}}}

{2}} \right)\\\\\left\{ {x|x=\frac{{4\pi }}{3}+2\pi

k,\,x=\frac{{5\pi }}{3}+2\pi k} \right\}\end{array}\)

\(\displaystyle 2\sec \left( {x-\frac{\pi }{4}}

\right)=4\)

 

\(\displaystyle \begin{array}{c}\sec \left( {x-



\frac{\pi }{4}} \right)=2\text{ }\left( {\cos \left( {x-

\frac{\pi }{4}} \right)=\frac{1}{2}} \right)\\\\x-

\frac{\pi }{4}=\frac{\pi }{3}+2\pi k;\,\,x-\frac{\pi }

{4}=\frac{{5\pi }}{3}+2\pi k\\\left\{ {x|x=\frac{{7\pi

}}{{12}}+2\pi k,\,\,x=\frac{{23\pi }}{{12}}+2\pi k}

\right\}\end{array}\)

\(\displaystyle \begin{array}{c}\color{#800000}{\begin{array}

{c}4\sec \theta +10=-\sec \theta

\\\text{(degrees)}\end{array}}\\\\5\sec \theta =-10\\\sec \theta

=-2\text{ }\left( {\cos \theta =-\frac{1}{2}} \right)\\\\\left\{

\begin{array}{l}\theta |\theta =120{}^\circ +360{}^\circ

k,\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,240{}^\circ +360{}^\circ

k\end{array} \right\}\end{array}\)

\(\displaystyle \begin{array}{c}\color{#800000}

{{2\sin x=4\sin x}}\\\\2\sin x=0\\\sin x=0\\\\\

{x|x=2\pi k,\,\,\,x=\pi +2\pi k\}\end{array}\)

Note that (by looking at Unit Circle) this can be

simplified to

\(\displaystyle \{x|x=\pi k\}\)

\(\displaystyle \text{co}{{\text{s}}^{2}}\theta

=\frac{1}{2}\)

 

\(\displaystyle \begin{array}{c}\sqrt{{\text{co}



{{\text{s}}^{2}}\theta }}=\sqrt{{\frac{1}{2}}}\\\cos

\theta =\,\,\pm \frac{1}{{\sqrt{2}}}=\,\,\pm

\frac{{\sqrt{2}}}{2}\\\\\{\theta |\theta =\frac{\pi }

{4}+2\pi k,\,\,\,\theta =\frac{{3\pi }}{4}+2\pi

k,\\\,\,\,\,\,\,\,\,\,\theta =\frac{{5\pi }}{4}+2\pi

\(\displaystyle \tan \left( {x+\frac{\pi }{2}} \right)=\sqrt{3}\)

 

\(\displaystyle \begin{array}{c}x+\frac{\pi }{2}=\frac{\pi }



{3}\,\,\,\,\,\,\,\,\,\,\,\,x+\frac{\pi }{2}=\frac{{4\pi }}{3}\\\,\,\,x=-

\frac{\pi }{6}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x=\frac{{5\pi }}

{6}\end{array}\)

Note that (by looking at Unit Circle) this can be simplified to

\(\displaystyle \begin{array}{c}\color{#800000}

{{3{{{\cot }}^{2}}\theta =1}}\\\text{co}

{{\text{t}}^{2}}\theta =\frac{1}{3}\\\sqrt{{{{{\cot

}}^{2}}\theta }}=\sqrt{{\frac{1}{3}}}\\\cot \theta

=\,\,\pm \frac{1}{{\sqrt{3}}}\\\\\{\theta |\theta

=\frac{\pi }{3}+\pi k,\,\,\,\theta =\frac{{2\pi }}{3}+\pi

k,\\\,\,\,\,\,\,\,\,\,\theta =\frac{{4\pi }}{3}+\pi

k,\,\,\theta =\frac{{5\pi }}{3}+\pi k\}\end{array}\)




k,\,\,\theta =\frac{{7\pi }}{4}+2\pi k\}\end{array}\)

Note that (by looking at Unit Circle) this can be

simplified to

\(\{\theta |\theta =\frac{\pi }{4}+\pi k,\,\,\,\theta

=\frac{{3\pi }}{4}+\pi k\}\)

\(\displaystyle \{x|x=\frac{{5\pi }}{6}+\pi k\}\)

 

(Remember that you add \(\pi k\) instead of \(2\pi k\) for  tan



and cot).

Note that (by looking at Unit Circle) this can be

simplified to

\(\{\theta |\theta =\frac{\pi }{3}+\pi k,\,\,\,\theta

=\frac{{2\pi }}{3}+\pi k\}\)

\(\displaystyle \frac{{\cot \theta }}{4}=\sin \theta \cos \theta \) 

 

\(\displaystyle \begin{array}{c}\frac{{\cos \theta }}{{4\sin \theta }}=\sin \theta



\cos \theta \\\cos \theta =4{{\sin }^{2}}\theta \cos \theta \\4{{\sin }^{2}}\theta

\cos \theta -\cos \theta =0\\\cos \theta \left( {4{{{\sin }}^{2}}-1} \right)=0\\\cos

\theta \left( {2\sin -1} \right)\left( {2\sin \theta +1} \right)=0\\\cos \theta =0\text{

}\,\,\text{ }\,\,\sin \theta =\pm \frac{1}{2}\,\\\\\{\theta |\theta =\frac{\pi }{2}+\pi

k,\,\,\,\theta =\frac{\pi }{6}+\pi k,\,\,\,\theta =\frac{{5\pi }}{6}+\pi k\,\}\end{array}\)

Watch domain restriction:

\(\displaystyle \frac{{1-\cos x}}{{\sin x}}=\frac{{\sin x}}{{1+\cos x}}\)

 

\(\begin{array}{c}\left( {1-\cos x} \right)\left( {1+\cos x} \right)={{\sin }^{2}}x\\1-



{{\cos }^{2}}x={{\sin }^{2}}x\\{{\sin }^{2}}x={{\sin

}^{2}}x;\,\,\,\,\mathbb{R}\end{array}\)

We get all real numbers since this is an 

identity


. But we still need to check the

domain restrictions (denominator can’t be 0):

\(\begin{array}{c}\sin x\ne 0,\,\,\,1+\cos x\ne 0\\\sin x\ne 0,\,\,\,\cos x\ne -

1\\\text{Solution: }\left\{ {x|\,\,x\ne \pi +2\pi k} \right\}\end{array}\)




Download 105,74 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish