Number Theory: Structures, Examples, and Problems



Download 1,87 Mb.
Pdf ko'rish
bet15/125
Sana08.02.2022
Hajmi1,87 Mb.
#434761
1   ...   11   12   13   14   15   16   17   18   ...   125
Bog'liq
Titu Andreescu, Dorin Andrica Number Theory Str

Notation
Z
the set of integers
Z
n
the set of integers modulo
n
N
the set of positive integers
N
0
the set of nonnegative integers
Q
the set of rational numbers
Q
+
the set of positive rational numbers
Q

the set of nonnegative rational numbers
Q
n
the set of
n
-tuples of rational numbers
R
the set of real numbers
R
+
the set of positive real numbers
R

the set of nonnegative real numbers
R
n
the set of
n
-tuples of real numbers
C
the set of complex numbers
|
A
|
the number of elements in the set
A
A

B
A
is a proper subset of
B
A

B
A
is a subset of
B
A
\
B
A
without
B
(set difference)
A

B
the intersection of sets
A
and
B
A

B
the union of sets
A
and
B
a

A
the element
a
belongs to the set
A
n
|
m
n
divides
m
gcd
(
m
,
n
)
the greatest common divisor of
m
,
n
lcm
(
m
,
n
)
the least common multiple of
m
,
n
π(
n
)
the number of primes

n
τ(
n
)
number of divisors of
n
σ(
n
)
sum of all positive divisors of
n
a

b
(
mod
m
)
a
and
b
are congruent modulo
m
ϕ
Euler’s totient function
ord
m
(
a
)
order of
a
modulo
m
μ
M¨obius function


xviii
Notation
a
k
a
k

1
· · ·
a
0
(
b
)
base-
b
representation
S
(
n
)
the sum of the digits of
n
(
f
1
,
f
2
, . . . ,
f
m
)
factorial base expansion
x
floor of
x
x
ceiling of
x
{
x
}
fractional part of
x
e
p
Legendre function
p
k
n
p
k
fully divides
n
f
n
Fermat number
M
n
Mersenne number
a
p
Legendre symbol
F
n
Fibonacci number
L
n
Lucas number
P
n
Pell number
n
k
binomial coefficient


I
Fundamentals



1
Divisibility
1.1
Divisibility
For integers
a
and
b
,
a
=
0, we say that
a divides
b if
b
=
ac
for some integer
c
.
We denote this by
a
|
b
. We also say that
b
is divisible by
a
or that
b
is a multiple
of
a
.
Because 0
=
a
·
0, it follows that
a
|
0 for all integers
a
. We have 0
|
0, since
0
=
0
·
0.
Straight from the definition we can derive the following properties:
1. If
a
|
b
,
b
=
0, then
|
a
| ≤ |
b
|
;
2. If
a
|
b
and
a
|
c
, then
a
|
α
b
+
β
c
for any integers
α
and
β
;
3. If
a
|
b
and
a
|
b
±
c
, then
a
|
c
;
4.
a
|
a
(reflexivity);
5. If
a
|
b
and
b
|
c
, then
a
|
c
(transitivity);
6. If
a
|
b
and
b
|
a
, then
|
a
| = |
b
|
.
The following result is called the
division algorithm
, and it plays an important
role:
Theorem.
For any positive integers a and b there exists a unique pair
(
q
,
r
)
of
nonnegative integers such that
b
=
aq
+
r
,
r
<
a
.
© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, 
Number Theory
,
 
DOI: 10.1007/b11856_1, 
3


4
I Fundamentals, 1. Divisibility
Proof.
Since
a

1, there exist positive integers
n
such that
na
>
b
(for example,
n
=
b
is one such). Let
q
be the least positive integer for which
(
q
+
1
)
a
>
b
.
Then
qa

b
. Let
r
=
b

aq
. It follows that
b
=
aq
+
r
and 0

r
<
a
.
For the uniqueness, assume that
b
=
aq
+
r
, where
q
and
r
are also non-
negative integers satisfying 0

r
<
a
. Then
aq
+
r
=
aq
+
r
, implying
a
(
q

q
)
=
r

r
, and so
a
|
r

r
. Hence
|
r

r
| ≥
a
or
|
r

r
| =
0. Because
0

r
,
r
<
a
yields
|
r

r
|
<
a
, we are left with
|
r

r
| =
0, implying
r
=
r
and, consequently,
q
=
q
.
In the theorem above, when
b
is divided by
a
,
q
is called the
quotient
and
r
the
remainder
.
Remark.
The division algorithm can be extended for integers as follows: For any
integers
a
and
b
,
a
=
0, there exists a unique pair
(
q
,
r
)
of integers such that
b
=
aq
+
r
,
0

r
<
|
a
|
.
Example.
Prove that for all positive integers
n
, the fraction
21
n
+
4
14
n
+
3
is irreducible.
(1st International Mathematical Olympiad)
Indeed, from the equality
2
(
21
n
+
4
)

3
(
14
n
+
3
)
= −
1
it follows that 21
n
+
4 and 14
n
+
3 have no common divisor except for 1; hence
the conclusion.
Problem 1.1.1.
Prove that for all integers n:
(a) n
5

5
n
3
+
4
n is divisible by
120
;
(b) n
2
+
3
n
+
5
is not divisible by
121
.
Solution.
(a)
n
5

5
n
3
+
4
n
=
n
(
n
2

1
)(
n
2

4
)
=
n
(
n

1
)(
n
+
1
)(
n

2
)(
n
+
2
),
the product of five consecutive integers:
n

2,
n

1,
n
,
n
+
1,
n
+
2.
If
n
∈ {−
2
,

1
,
0
,
1
,
2
}
we get
n
5

5
n
3
+
4
n
=
0 and the property holds.
If
n

3 we can write
n
5

5
n
3
+
4
n
=
5
!
n
+
2
5
=
120
n
+
2
5
,
and the conclusion follows.


1.1. Divisibility
5
If
n
≤ −
3, write
n
= −
m
, where
m

3, and obtain
n
5

5
n
3
+
4
n
= −
120
m
+
2
5
,
and we are done.
(b) Observe that
n
2
+
3
n
+
5
=
(
n
+
7
)(
n

4
)
+
33
,
so that 11
|
n
2
+
3
n
+
5 if and only if 11
|
(
n
+
7
)(
n

4
)
. Thus, if 11
(
n
+
7
)(
n

4
)
then 11 (and hence 121) does not divide
n
2
+
3
n
+
5. So, assume 11 divides
(
n
+
7
)(
n

4
)
. Then 11
|
n
+
7 or 11
|
n

4; but then 11 must divide both of
n
+
7 and
n

4, since
(
n
+
7
)

(
n

4
)
=
11. Thus, 121
|
(
n
+
7
)(
n

4
)
.
However, 121
33. So 121
n
2
+
3
n
+
5
=
(
n
+
7
)(
n

4
)
+
33. Hence, in all
cases, 121
n
2
+
3
n
+
5.
Problem 1.1.2.
Let a
>
2
be an odd number and let n be a positive integer. Prove
that a divides
1
a
n
+
2
a
n
+ · · · +
(
a

1
)
a
n
.
Solution.
Define
k
=
a
n
and note that
k
is odd. Then
d
k
+
(
a

d
)
k
=
a
[
d
k

1

d
k

2
(
a

d
)
+ · · · +
(
a

d
)
k

1
]
Summing up the equalities from
d
=
1 to
d
=
a

1
2
implies that
p
divides
1
k
+
2
k
+ · · · +
(
a

1
)
k
, as claimed.
Problem 1.1.3.
Prove that
3
4
5
+
4
5
6
is a product of two integers each of which is larger than
10
2002
.
Solution.
Write 3
4
5
+
4
5
6
as
m
4
+
4
n
4
, where
n
=
2
(
5
6

1
)/
2
. Then the desired
factorization is
m
4
+
4
n
4
=
(
m
2
+
2
n
2
)
2

4
m
2
n
2
=
(
m
2

2
mn
+
2
n
2
)(
m
2
+
2
mn
+
2
n
2
).
Since the smaller factor is
m
2

2
mn
+
2
n
2
=
(
m

n
)
2
+
n
2

n
2
=
2
5
6

1
>
2
8008
=
(
2
4
)
2002
>
10
2002
,
we are done.
Problem 1.1.4.
Find all positive integers n such that for all odd integers a, if
a
2

n then a
|
n.
Solution.
Consider a fixed positive integer
n
. Let
a
be the greatest odd integer
such that
a
2
<
n
and hence
n

(
a
+
2
)
2
. If
a

7, then
a

4
,
a

2
,
a
are odd integers that divide
n
. Note that any two of these numbers are relatively


6

Download 1,87 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   ...   125




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish