OP-2-30 кичик осма плуг бўйича.
а) Ҳайдов агрегатининг ишчи тезлиги
V
и
= 5,4 km/h (1,5 m/s) бўлганда TTZ-30C
кичик трактор илмоғидаги қувват
N
ил
= 11,32 kW [1, Б. 28-32].
б) Ҳисоб учун дастлабки параметрлар: корпуслар сони –
n
к
= 2; битта корпуснинг
қамраш кенглиги –
b
= 0,30 m; ҳайдов чуқурлиги –
а
= 0,25 m; конструктив массаси –
m
ил
=
230 kg; оғирлиги –
G
пл
= 2,257 кN (
m
пл
g = 230 · 9,81 = 2257 N
); дала сатҳининг қиялиги –
i
= 5%; плугнинг тортишга солиштирма қаршилиги –
К
пл
= 60 кN/m
2
[2, Б. 103].
в) Плугнинг конструктив қамров кенглиги:
В
пл
=
n
к
b = 2 · 0.3 = 0,6 m.
г) Плугнинг тортишга қаршилиги [3, Б. 10-11]:
R
аг
= В
пл
К
пл
а + G
пл
𝑖
100
=0,6 · 60 · 0,25 + 2,257·
5
100
= 9,112 кN.
д) Кичик ҳайдов агрегатининг
R
аг
нинг ўзгармас қийматида
N
ил
=
11,32 kW қувватни
реализация қилинишини таъминлайдиган ишчи тезлиги:
h
km
R
N
V
аг
ил
и
/
472
,
4
112
,
9
32
,
11
6
,
3
6
,
3
ёки
.
/
242
,
1
s
m
V
и
е) Агрегатнинг ишчи тезлиги
V
и
= 5,4 km/s бўлиб,
n
к
,
К
пл
,
а
,
G
пл
ва
i
параметрлар
қийматлари ўзгаришсиз қолганда кичик плуг корпусининг
N
ил
= 11,32 kW қувватни
реализация қилинишини таъминлайдиган қамраш кенглиги:
247
,
0
)
05
,
0
257
,
2
4
,
5
32
,
11
6
,
3
(
25
,
0
60
2
1
)
100
6
,
3
(
1
i
G
V
N
а
К
n
b
пл
и
ил
пл
к
ёки
25
,
0
b
m.
ж) Демак,
V
и
= 5,4 km/h ва
25
,
0
b
m ҳамда
3
,
0
b
m ва
472
,
4
и
V
km/h бўлганда
илмоқдаги
N
ил
= 11,32 kW қувватдан тўла фойдаланилади.
ОР-3-30 кичик осма кичик плуг бўйича.
а) Ҳисоб учун дастлабки параметрлар: корпуслар сони
n
K
= 3; битта корпуснинг
қамраш кенглиги -
3
,
0
b
m; ҳайдов чуқурлиги –
а
= 0,25 m; конструктив массаси -
m
пл
=
230 kg; оғирлиги –
G
пл
= 2,257 кN (
m
пл
g = 230 · 9,81 = 2257 N
); дала сатҳининг қиялиги -
i
= 5%; плугнинг тортишга солиштирма қаршилиги
К
пл
= 60 кN/m
2
.
б) Плугнинг конструктив қамраш кенглиги:
9
,
0
3
,
0
3
b
n
В
к
пл
m.
в) Плугнинг тортишга қаршилиги:
612
,
13
05
,
0
257
,
2
25
,
0
60
9
,
0
100
i
G
а
К
В
R
пл
пл
пл
аг
кN.
458
г) Кичик ҳайдов агрегатининг
аг
R
нинг ўзгармас қийматида
32
,
11
ил
N
kW
қувватни реализация қилинишини таъминлайдиган ишчи тезлиги:
0
,
3
612
,
13
32
,
11
6
,
3
6
,
3
аг
ил
и
R
N
V
km/h ёки
833
,
0
и
V
m/h.
д) Агрегатнинг ишчи тезлиги
4
,
5
п
V
km/h бўлиб,
n
K
,
К
пл
,
а,
G
пл
,
i
параметрларнинг
қийматлари ўзгаришсиз қолганда плуг битта корпусининг
32
,
11
ил
N
kW қувватни
реализация қилинишини таъминлайдиган қамраш кенглиги:
25
,
0
60
3
1
)
100
6
,
3
(
1
i
G
V
N
а
К
n
b
пл
п
ил
пл
к
165
,
0
)
05
,
0
257
,
2
4
,
5
32
,
11
6
,
3
(
ёки
2
,
0
b
m.
е) Демак,
4
,
5
и
V
km/h ва
2
,
0
b
m ҳамда
3
,
0
b
m ва
3
и
V
km/h бўлганда
илмоқдаги
32
,
11
ил
N
kW қувватдан тўла фойдаланиш таъминланади.
Шундай қилиб, кичик ҳайдов агрегатларининг қўйидаги иш режимларида TTZ-30C
тракторининг илмоғидаги 11,32 kW қувватдан тўла фойдаланишга эришилади:
ОР-2-30 плуг билан:
4
,
5
и
V
km/h ва
25
,
0
b
m;
3
,
0
b
m ва
472
,
4
и
V
km/h;
ОР-3-30 плуг билан:
4
,
5
и
V
km/h ва
2
,
0
b
m;
3
,
0
b
m ва
3
и
V
km/h.
Фойдаланилган адабиётлар.
1. Тошболтаев М., Муродова З. Расчет баланса мощности мини трактора TTZ-30С //
Интеграция науки, общества, производства и промышленности: проблемы и перспективы”
Сборник статей Международной научно-практической конференции 20 июля 2021 г.,
Тюмень. - Уфа: Аэтерна, 2021. – C. 28-32.
2. Эксплуатационные свойства мобильных агрегатов. Учебное пособие /
Костюченков Н.В., Плаксин А.М.; Под ред. А.М. Плаксина. – Астана: КАТУ им.
С.Сейфулина, 2010. – 204 с.
3. Карабаницкий А.П., Чеботарев М.И. Комплектование энергосберегающих
машинно-тракторных агрегатов. Учебное пособие. – Краснодар: КубГАУ, 2012. – 97 с.
FIRE PROTECTION OF WOOD MATERIALS BY ANTIPYRENE BASED ON LOCAL
RAW MATERIALS
1
Nurkulov F.N.,
2
Sidikov I.I.,
3
Jumayev S.K.
1
Tashkent Scientific Research Institute of Chemical Technology.
2
Tashkent Institute of Architecture and Civil Engineering, Tashkent.
3
Ministry of Emergency Situations of the Republic of Uzbekistan
The goal is the fire protection of wood materials with oligomeric fire retardants based on
local and secondary raw materials, and the development of an effective technology for its fire
protection. The article discusses the methods of increasing the fire resistance of wooden building
materials. The influence of the developed fire retardants on the degree of flammability, oxygen
index and smoke production coefficient of wood materials, as well as the effect on the structure,
physicomechanical and chemical properties of wood materials treated with fire retardants are
given.
The main classifier of fire hazard of building materials is flammability. In addition, no less
important properties of building materials are flammability, the speed of propagation of the flame
on the surface, as well as the level of smoke during combustion. [1].
459
In the world practice of the construction industry, more and more attention is paid to fire-
resistant building materials, and the issues of ensuring fire safety of buildings and structures [18],
erected according to modern requirements from various combustible building materials, remain
relevant [13]. For the fires occurring in the world cause enormous harm to life and health of people,
material damage to property and damage to the natural environment. Fires, mainly in the first 10-
15 minutes, spread over combustible building and finishing materials over large areas. This is due
to the low quality of fire retardants for processing building materials or the absence of fire
protection at all, the lack of modern and effective technologies for processing wood materials with
fire retardants [14]. In this regard, all over the world, much attention is paid to the production of
fire retardants that increase the fire-resistant qualities of wood materials, the creation of optimal
compositions and the improvement of the effective mechanism of action of fire retardants. [4, 11].
Research in the world's leading research centers to improve the fire resistance of building
materials [17], including the synthesis of fire retardants based on oligomers and polymers
containing nitrogen, phosphorus, boron, chlorine [9]. and various oxides and hydroxides of metals,
as well as modification with wood building materials to reduce its costs for fire resistance. research
is underway. [10]. In this direction, the development of optimal compositions of multifunctional
fire retardants based on local raw materials and industrial waste, improvement of the technology
for processing fire retardants into wood building materials remains one of the urgent tasks. [5].
In order to increase the degree of fire resistance of building materials in our republic,
various chemical compositions have been created and synthesized, ie ammophos, ammonium
sulfate [15] and other chemical compositions, significant results have been achieved in the field of
fire protection of existing buildings and structures. [2].
The studies were carried out taking into account the compliance with the parameters of
flame retardation over the surface, slow flame propagation over the surface and fast flame
propagation over the surface on the basis of clause 2.15.2 of SS 12.1.044. [3]. When evaluating
the flame spread index, the time when each part of the surface is covered by the flame, the
temperature of the evolved gases, the time to reach the maximum temperature and the speed of
flame propagation over the sample surface are of great importance. [9, 19].
For testing, 10 wood samples of each grade were selected. [3]. As a result, the indicators
of the flame spread index in the treated wood samples were improved (table-1).
Since the indices of the flame spread index on samples processed in accordance with clause
4.19 of SS 12.1.044 are in the range of 0–20, wood samples treated with fire retardants AJ-2, 10
and 11 belong to the class "Slowly spreading flame over the surface" [3].
A more detailed study of the parameters of the flame spread of wood materials treated with
fire retardants AJ-2, AJ-10 and AJ-11 based on local raw materials [6] showed that the arithmetic
mean value of the index of flame spread over the surface, equal to 5, remained unchanged within
one year. are given in table-2.
Table 1
Do'stlaringiz bilan baham: |