Узбекистан академия наук республики узбекистан


II. TRADITIONAL APPROACH TO THE PROBLEM OF CALCULATING THE



Download 15,51 Mb.
Pdf ko'rish
bet113/391
Sana25.02.2022
Hajmi15,51 Mb.
#302962
TuriСборник
1   ...   109   110   111   112   113   114   115   116   ...   391
Bog'liq
Сборник трудов МК-2021-Карши

II. TRADITIONAL APPROACH TO THE PROBLEM OF CALCULATING THE 
STEADY STATE.
At present, iterative methods (or methods of successive approximations) have found wide 
practical application in the calculation of power systems steady-state calculations. Iterative 
methods include: simple iteration method, Gauss-Seidel method, Newton-Raphson method and its 
modifications, gradient method, etc. [5] 
Simple iteration and Gauss-Seidel methods are not always sufficient to solve nonlinear 
systems of computational power equations, therefore, in practice, these methods are rarely used 
and are used to calculate the mode of simple electrical networks. [6] 


149 
From a theoretical point of view, Newton-Raphson method is the most attractive, but its 
practical application runs into certain difficulties. In particular, the problem of finding a good 
initial approximation, the need to solve a linear system of equations at each iteration step, etc. 
But despite these shortcomings, Newton-Raphson method is the main one for calculating 
steady-state regimes due to the high convergence rate (with good initial approximations, it is 
enough to perform 3-5 iterations) and are used in modern software tools like DIgSILENT 
PowerFactory, Etap, RASTR, Mustang, etc. 
III. ABOUT ARTIFICIAL NEURAL NETWORKS. 
Neural networks are a complex nonlinear system that consists of numerous neurons. In this 
system, every neuron has a relatively simple function and construction. However, when they are 
merged together into the entire system, the behavior can be very complex. In artificial neural 
networks, strength and condition of every connection between nodes are adjustable, it has strong 
ability of self-learning and self-adaption. The artificial neural network can be applied to many 
aspects and research areas. Dividing the data samples into three parts: the training data set, the 
validation data set and the testing data set. The training data set and the validation data set are used 
in the process of “training”, and the validation data set is randomly picked up from training data 
set in some proportion. [7, 8] 
In an artificial neural network, the neurons can be classified into three types according to 
their position and the information they process: input units, hidden units and output units. The 
input units receive the input information of the system, which represent the outside signals or data. 
The output unit give the output after neural network processes, which represent the result. Hidden 
units form a layer between the input units and the output units. While they do not represent any 
information of the entire system, but they are significant to the entire neural network and have 
profound impact on the prediction results. The connection between each neuron mainly reflect the 
process of information from input to output. This process is repeated many epochs, it is the 
important part of artificial neural network learning and training. [9] 
Input Layer: The nodes are input units which do not process the data and information but 
distribute this data and information to other units. 

Download 15,51 Mb.

Do'stlaringiz bilan baham:
1   ...   109   110   111   112   113   114   115   116   ...   391




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish