Ch. 3: Forced Vibration of 1-dof system



Download 1,63 Mb.
Pdf ko'rish
bet1/4
Sana22.11.2019
Hajmi1,63 Mb.
#26787
  1   2   3   4
Bog'liq
Ch3


Ch. 3: Forced Vibration of 1-DOF System

3.0 


Outline

„ Harmonic Excitation

„ Frequency Response Function

„ Applications

„ Periodic Excitation

„ Non-periodic Excitation

3.0 Outline


Ch. 3: Forced Vibration of 1-DOF System

3.1 


Harmonic Excitation

Force input function of the harmonic excitation is the

harmonic function, i.e. functions of sines and cosines.  

This type of excitation is common to many system

involving rotating and reciprocating motion.  Moreover,

many other forces can be represented as an infinite

series of harmonic functions.  By the principle of

superposition, the response is the sum of the individual 

harmonic response.

It is more convenient to use the frequency domain

technique in solving the harmonic excitation problems.

This is because the response to different

excitation frequencies can be seen in one graph.

3.1 Harmonic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

( )

( )


0

2

0



0

0

0



2

0

Let us focus on the particular solution of



cos

normalize the equation of motion

2

cos


,    

/

Re



solve for 

 from  


2

and the solution 



n

n

i t

i t

n

n

mx

cx

kx

F

t

x

x

x

f

t

f

F

m

f t

f

e

z t

z

z

z

f e

ω

ω



ω

ζω

ω



ω

ζω

ω



+

+

=



+

+

=



=



=



+

+



=

( ) ( )


( )

( )


( )

(

)



(

)

( )



( )

2

2



0

is the real part of 

;   

Re

Assume the solution to have the same form as the forcing function



  same frequency as the input w/ different mag. and phase

2

i t



i t

i t

n

n

z t

x t

z t

z t

Z i

e

i

Z i

e

f e

f

Z i

ω

ω



ω

ω

ω



ζωω ω

ω

ω



=



=



+

+



=

=

(



)

(

)



2

0

0



2

2

2



0

2

/



2

1

/



2

/

         



1

/

2



/

n

n

n

n

n

n

n

f

i

i

F

k

i

ω

ω



ω

ζωω


ω ω

ζω ω


ω ω

ζω ω


=

+



+

=





+



Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

( )

( )


( )

( )


( )

( )


( )

(

)



( )

(

)



(

)

0



0

2

0



2

2

0



2

2

2



1

2

1



2

Re

,  /



1

2

1



If 

 is the frequency response

1

2

cos



1

where  


magnitude

1

2



2

tan


 phas

1

i t



i t

i t

n

i

F

z t

e

H i

F e

k

r

i

r

F

x t

e

r

k

r

i

r

H i

H i

e

k

r

i

r

x t

F H i

t

H i

k

r

r

r

r

ω

ω



ω

θ

ω



ζ

ω ω


ζ

ω

ω



ζ

ω

ω θ



ω

ζ

ζ



θ

=



=



− +





=



=



− +





=

=



− +





=

+

=



=

+



=

=



( )


( )

e

The system modulates the harmonic input by



the magnitude 

 and phase 



H i

H i

ω

ω



Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

(

)

(



)

( )


(

)

( )



(

)

( )



1

2

0



1

total response

homogeneous soln. particular soln.

Recall the homogeneous solution of the underdamped system

cos

 or 


sin

cos


cos

cos


or 

n

n

n

n

t

t

h

d

h

d

d

t

d

t

x

Ce

t

x

e

A

t

A

t

x t

Ce

t

F H i

t

x t

e

A

ζω

ζω



ζω

ζω

ω



φ

ω

ω



ω

φ

ω



ω θ



=



+

=



=

+



=

+



+

=

(



)

( )


(

)

2



0

1

2



sin

cos


cos

The initial conditions will be used to determine  ,  or  ,

They will be different from those of free response

because the transient term now is partly due to the excitatio



d

d

t

A

t

F H i

t

C

A A

ω

ω



ω

ω θ


φ

+

+



+

n force


and partly due to the initial conditions

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

Ex. 1  Compute and plot the response of a spring-mass

system to a force of magnitude 23 N, driving

frequency of twice the natural frequency and i.c.

given by x

0

= 0 m and v



0

= 0.2 m/s.  The mass

of the system is 10 kg and the spring stiffness

is 1000 N/m.



Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

(

)

( )



(

)

( )



( )

( )


3

2

2



3

1

2



3

1

2



2

/

1000 /10



10 rad/s

/ 2


0

2 10


20  rad/s

1

1



0.333 10

1

2



1000

1 2


sin

cos


23 0.333 10 cos

cos


sin

23 0.333 10 sin

i.c.  

0

0



23 0.333 10

n

n

n

n

n

n

n

n

k m

c

m

H i

k

r

i

r

x t

A

t

A

t

t

x t

A

t

A

t

t

x

A

ω

ζ



ω

ω

ω



ζ

ω

ω



ω

ω

ω



ω

ω

ω



ω



=

=



=

=

=



= ×

=

=



=

= −


×



− +

× −


=



+

×



×

=



+ × ×

×

= =



×

×



( )

( )


(

)

3



3

2

1



1

3

,   



7.667 10

0

0.2 10



,   

0.02


0.02 sin10

7.667 10


cos10

cos 20  m



A

x

A

A

x t

t

t

t



=

×



=

= ×


=

=



+

×



Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

Ex. 2  Find the total response of a SDOF system with

m = 10 kg, c = 20 Ns/m, k = 4000 N/m, x

0

= 0.01 m,



v

0

= 0 m/s under an external force F(t) = 100cos10t.



Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

(

)

( )



(

)

( )



( )

(

)



(

)

( )



(

)

( )



2

2

0



2

1

2



1

/

20  rad/s



/ 2

0.05


/

0.5


1

1

332.6



6

0.0666


1

2

4000



1 0.5

2 0.05 0.5

cos

33.26


3cos 10

0.0666


sin

cos


,  1

19.975 


rad/s

s

n



n

n

n

n

p

t

h

d

d

d

n

t

k m

c

m

r

H i

E

k

r

i

r

i

x

t

F H i

t

E

t

x t

e

A

t

A

t

x t

e

A

ζω

ζω



ω

ζ

ω



ω ω

ω

ζ



ω

ω θ


ω

ω

ω



ω

ζ



=

=



=

=

=



=

=

=



=



− +



× −

+ ×


×



=

+

=



=



+

=



=

=

(



)

( )


(

)

( )



(

)

(



)

( ) (


)

2

0



1

2

1



2

0

in



cos

cos


sin

cos


cos

sin


          

sin


n

n

d

d

t

t

n

d

d

d

d

d

d

t

A

t

F H i

t

x t

e

A

t

A

t

e

A

t

A

t

F H i

t

ζω

ζω



ω

ω

ω



ω θ

ζω

ω



ω

ω

ω



ω

ω

ω



ω

ω θ


+



+

+

= −



+

+



+


Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

ω

response


finally becomes ω, and in phase

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

ω

response


finally becomes ω, and out of phase

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

F

0

ω



n

t/(2k)


( )

( )


( )

0

In case of 



0 and 

,  the guess solution of the form

cos

sin


 is invalid.  This is because

it has the same form as the homogeneous solution.

The correct particular solution is 

n

i t

n

p

x t

X i

e

A

t

B

t

F

x

t

ω

ζ



ω ω

ω

ω



ω

ω

=



=

=

=



+

=

sin



.

2

n



t

t

k

ω


Ch. 3: Forced Vibration of 1-DOF System

Beat  


when the driving frequency is close to natural freq.

3.1 Harmonic Excitation

( )

(

)



0

0

0



2

2

2



2

2

0



0

1

0



0

2

2



0

The total solution can be arranged in the form

sin

cos


cos

cos


2

      


sin

tan


sin

sin


2

2

If the system is at rest in 



n

n

n

n

n

n

n

n

n

n

n

n

v

f

x t

t

x

t

t

t

x

v

x

f

t

t

t

v

ω

ω



ω

ω

ω



ω

ω

ω



ω

ω ω


ω ω

ω

ω



ω

ω



=

+

+



+





+



=



+

+











( )

0

2



2

0

2



2

the beginning,

2

sin


sin

2

2



The response oscillates with frequency 

 inside


2

2

the slowly oscillated envelope 



sin

2

The beat frequency is 



n

n

n

n

n

n

n

f

x t

t

t

f

t

ω ω


ω ω

ω

ω



ω ω

ω ω


ω

ω

ω ω



+





=







+









Ch. 3: Forced Vibration of 1-DOF System

Beat  


when the driving frequency is close to natural freq.

3.1 Harmonic Excitation



Ch. 3: Forced Vibration of 1-DOF System

3.2 


Frequency Response Function

3.2 Frequency Response Function

( )

(

)



2

The core of the particular solution to the harmonic function is

1

frequency response function



1

2

It specifies how the system responds to harmonic excitation.



As a standard, we normalize the 

H i

k

r

i

r

ω

ζ



=

− +


( )

2

frequency response function



1

 and then study how it varies as the

1

2

excitation frequency   and system parameters  ,



 vary.

It is indeed more convenient since we already normalized the frequen



n

G i

r

i

r

ω

ζ



ω

ζ ω


=

− +


( )

( )


cy;

/

.  So we can now study its variation to   and  .



For the fixed damping ratio, we plot 

 with   varies.

 has both magnitude and phase

magnitude and phase plot.

Then we repeatedly evaluate 

n

r

r

G i

r

G i

G i

ω ω


ζ

ω

ω



=

( )



 by varying  .

ω

ζ



Ch. 3: Forced Vibration of 1-DOF System

3.2 Frequency Response Function

Frequency response plot

(Bode diagram)

( )

(

)



(

)

2



2

2

1



1

2

H i



r

r

ω

ζ



=

+



1

2

2



tan

1

r



r

ζ

θ





=







Ch. 3: Forced Vibration of 1-DOF System

Resonance is defined to be the vibration response at

ω=ω

n

, regardless whether the damping ratio is zero.



At this point, the phase shift of the response is –π/2.

The resonant frequency will give the peak amplitude for 

the response only when ζ=0.  For             ,the peak 

amplitude will be at                         , slightly before ω

n

.

For               , there is no peak but the max. value of the



output is equal to the input for the dc signal (of course, 


Download 1,63 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish